Advertisement

Why not we change our D.N.A. to control metabolic disorders naturally?

Mini Review Article | DOI: https://doi.org/10.31579/2834-8761/062

Why not we change our D.N.A. to control metabolic disorders naturally?

  • Pramod Stephen *

Innovator, Christian Church PO Sugauli 845456, East Champaran, Bihar, India, 

*Corresponding Author: Pramod Stephen, Innovator, Christian Church PO Sugauli 845456, East Champaran, Bihar, India.

Citation: Pramod Stephen (2024) Why not we change our D.N.A. to control metabolic disorders naturally? Clinical Endocrinology and Metabolism, 3(4) DOI:10.31579/2834-8761/062

Copyright: © 2024, Pramod Stephen, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Received: 11 September 2024 | Accepted: 24 September 2024 | Published: 14 October 2024

Keywords: DNA; Chromosomes; Gene expression

Abstract

After the discovery of insulin in 1922 scientists continued researching to solve the problem of curing diabetesand other metabolic disorders but, till now no path has been able to cure it. And all scientists fail to reach the root cause of metabolicdisorders

 

Summary

After the discovery of insulin in 1922 scientists continued researching to solve the problem of curing diabetesand other metabolic disorders but, till now no path has been able to cure it. And all scientists fail to reach the root cause of metabolicdisorders.

Scientists and doctors use medicine to control metabolic disorders and step by step they increase the dose of medicine lastly the conditions of patients get worse. The root cause of metabolic disorders is remineralisations, methodization’s mutations and biosynthesis inside the human body. My method of curing metabolic disorders is natural and affects genes to generations.

GeneralQuestion for all: -

  1. Can medicine, substitutes, hormones, or therapycure diabetes and other metabolic disorders?
  2. Why does hormonal imbalance occur in the human body?
  3. Can insulindeficiency result from biosynthesis in our body?
  4. How can we correct biosynthesis in the human body?
  5. Can we arrange all the amino acids necessary for insulin secretions inside the body?
  6. Can we arrange the amino acid, peptide chain, and biosynthesis insidethe body?

How our gens affected by our habits and other factors? What are chromosomes?

Chromosomes are thread like structures made of protein and a single molecule of DNA that serve to carry the genomic information from cell to cell. In plants and animals (including humans). Chromosomes reside in the nucleus of cells. Humans have 22 pairs of numbered chromosomes (autosomes) and one pair of sex chromosomes (XX or XY), for a total of 46. Each pair contains two chromosomes, one coming from each parent. Which means that children inherit half of their chromosome from their mother and half from their father. Chromosomes can be seen through a microscope when the nucleusdissolves during cell division.

Chromosomes are found in the nucleus of every cell of our body and are made up of DNA, tightly coiled around proteins. We have 23 pairs of chromosomes altogether, and they can only be easily observedduring cell division.

So why our DNA is kept in this special packaging? The chromosomes’ unique structure allows our genetic data to be discreetly kept inside our nuclei. This is importantbecause we have an abundance of genetic data. If the DNA moleculesin a single cell were unwound, they would stretch out of six feet long.

The chromosomes’ unique structure has a few key parts. Each chromosomes have two short arms calledp arms and two arms called q arms. These arms are held together at the centre by the centromere. The tips of thechromosomes are capped by sections of DNA called telomeres. Telomeres protect chromosomes during DNA replication. By keeping our DNA secure, chromosomes make daily activities possible. For an organism to function properly,certain cells must constantly divideand replace older worn outs cell with newones.

Chromosomes allow DNA to be accurately copied during these cell divisions.

So, one more time. Chromosomes are found in the nuclei of our cells and allow DNA to be accurately copied during cell division. This ensures that our inner workingproceed smoothly and efficiently.

How chromosomes work?

Our body is made up of trillions of cells. Each cell is a copy of a single cell that divideditself to make all of the cells in your body. Your cells need instructions to create who you are. Your DNA, genes and chromosomes work together to tell your body how to formand function.

How do I improve the health of my DNA?

To improvethe health of your DNA, take steps to take care of your body since your DNA is responsible for how you form and function. You can improve your overall health by.

  • Eating a well-balanced diet.
  • Exercising.
  • Maintaining a healthy weight

What is DNA?

DNA is a biological molecule that containsthe instructions an organism needsto function, develop,and reproduce. It is presentin all forms of life on the earth and contains each organism’s geneticscode.

https://www.ncbi.nlm.nih.gov/books/NBK26821/How does DNA change?

Mutations result either from errors in DNA replication or from the damaging effects of mutagens, such as chemicals and radiation, which react with DNA and change the structures of individual nucleotides. All cells possessDNA-repair enzymes that attempt to minimize the number of mutations that occur.

https://www.nih.gov/news-events/nih-research-matters/dna-changes-predict-longevity

What is mutationand how does it work?

A mutation is a change in the DNA sequence of an organism. Mutations can result from errors in DNA replication duringcell division, exposureto mutagens or a viral infection. Germlinemutations (that occur in eggs and sperm) can be passed on to offspring, while somatic mutations (that occurs in body cells) are not passed on.

Mutations are happening in our cells all the time, but almost none of these affect our health. This is very different than what we often see in sciencefiction in movies.In real life, a mutationis never so beneficial that it turns a person into a superhero or does something bizarre like cause them to grow wings. There are many reasons that mutations usually don't have major consequences. One reason is that our cells have very sophisticated machinery for repairing mutations very quickly. So, there's not enough time for them to cause problems. Another is that most mutations occur in somatic cells like muscle cells or skin cells and can only affect the cell where the mutation occurred and cells that grow from that cell. On the other hand, when mutations occur in germline cells, eggs and sperm, they will be present in every cell that develops from that egg or sperm, an entire person, and can have larger effects.

https://www.ncbi.nlm.nih.gov/books/NBK21114/#:~:text=A mutation What is RNA?

Ribonucleic acid (abbreviated RNA) is a nucleic acid present in all living cells that has structural similarities to DNA. Unlike DNA, however, RNA is most often single-stranded. An RNA molecule has a backbone made of alternating phosphate groups and the sugar ribose, rather than the deoxyribose found in DNA. Attached to each sugar is one of four bases: adenine(A), uracil (U), cytosine (C) or guanine(G). Different types of RNA exist in cells: messenger RNA (mRNA), ribosomal RNA

https://www.genome.gov/genetics-glossary/RNA-Ribonucleic-Acid

How RNA Work?

RNA is synthesized from DNA by an enzyme known as RNA polymerase during a process called transcription. The new RNA sequences are complementary to their DNA template, rather than beingidentical copies of the template. RNA is then translated into proteins by structures called ribosomes. There are three types of RNA involvedin the translation process:messenger RNA transferRNA and ribosomal RNA.

The cell. For example, some RNA molecules are involved in switching genes on and off, and although some RNA molecules are passive copies of DNA, many play crucial, activeroles in otherRNA molecules make up the critical protein synthesis machinery in ribosomes.

https://www.ncbi.nlm.nih.gov/books/NBK558999/What is genome?

Encoded as the DNA within each of the 24 distinct chromosomes in the cell nucleus. A smallDNA molecule is found within individual mitochondria. These are usually The human genome is a complete set of nucleic acid sequencesfor humans, treated separately as the nuclear genome and themitochondrial genome.

https://www.genome.gov/genetics-glossary/Genome

How does human genomework?

Human genomes include both protein-coding DNA sequences and various types of DNA that does not encode proteins. The latter is a diverse categorythat includes DNA coding for non-translated RNA, such as that for ribosomal RNA, transfer RNA, ribozymes, small nuclear RNAs, and several types of regulatory RNAs.

Genetics and our health.

The strongest risk factors for commondisease complexes such as cancer, cardiovascular disease, diabetes, autoimmune disorders, and psychiatric illnesses. A person inherits a complete set of genes from each parent, as well as a vast array of culturaland although there are many possible causes of human disease, family history is often one of socioeconomic experiences from his/her family. Family history is thought to be a good predictor of an individual’s disease risk because family members most closely represent the unique genomic and environmental interactions that an individual experiences. Inheritedgenetic variation within families clearly contributes both directly and indirectly to the pathogenesis of disease. This chapter focuses on what is known or theorized about the direct link between genes and health and what still must be explored in order to understandthe environmental interactions and relative roles among genes that contribute to health and illness.

Genetic code

The geneticcode is a set of rules defining how the four-letter code of DNA is translatedinto the 20- letter code of amino acids,which are the buildingblocks of proteins. The genetic code is a set ofthree-letter combinations of nucleotides called codons, each of which corresponds to a specific amino acid or stop signal.

There are 64 possible permutations, or combinations, of three-letter nucleotide sequences that can be made from the fournucleotides. Of these 64 codons, 61 represent amino acids, and three are stop signals. Although each codon is specificfor only one amino acid (or one stop signal), the genetic code is describedas degenerate, or redundant, because a single amino acid may be coded for by more than one codon. It is also important to note that thegenetic code does not overlap, meaningthat each nucleotide is part of only one codon-a single nucleotide cannot be part of two adjacentcodons.

Furthermore, the genetic code is nearly universal, with only rare variations reported. For instance, mitochondria have an alternative genetic code with slight variations.

How genetics code change?

The geneticcode grew from a simpler earlier code througha process of "biosynthetic expansion". Primordial life "discovered" new amino acids (for example, as by-products of metabolism) and later incorporated some of these into the machinery of genetic coding.

What are genetic disorders?

Genetic abnormalities are conditions caused by changes to the genes or chromosomes. Inherited disorders are caused by gene mutations. Chromosomal abnormalities occur when there are missing or extra chromosomes or pieces of chromosomes. Down syndrome is an exampleof a genetic disordercaused by a chromosomeabnormality.

How do genetic disordersoccur?

Genetic abnormalities occur when there is an abnormality in one or more genes. Some genetic disorders are passed down from parents to children through their genes. Sometimes there are sporadic changes in the DNA of a gene that causethe developing baby to be affected without a prior family history

Can genetic abnormalities be prevented?

Genetic defectscannot always be prevented, but there are many aspectsof prenatal care that can protect your unborn baby.

What happens if genetic abnormalities are detected? Can be change genetics?

Genome editing is a method for making specific changes to the DNA of a cell or organism. It can be used to add, remove or alter DNA in thegenome. Human genomeediting technologies can be used on somatic cells (non-heritable), germline cells (not for reproduction) and germline cells (for reproduction).

Surprisingly, recent and ongoing research suggests that positive behavioural and lifestyle changes can affect you genetically. This might sound crazy considering we are all born with a fixed genome, but our genes can be altered dependingon their activity level.

How DNA ChangePlace?

DNA is constantly changing through the process of mutation. DNA is a dynamic and adaptable molecule. As such the nucleotidesequences found within is are subject to changeas the result of a phenomenon called Mutation. Depending on how a particular mutation modifies an organism's genetic makeup, it can proveharmless, helpful, or even hurtful. Sometimes, a mutation may even cause dramatic changes in the physiology of an affected organism. Of course, in order to better understand the varying effects of mutations, it is first necessary to understand what mutations are and how they occur.

How genes effectour life?

Genes are a set ofinstruction passed down from parent of offspring. They contain the information that determine a person’s specific physical and biological traits like, hear colour, eye colour, and blood type.

Most genes code for specific proteins which have different functions throughout the body and allow humansto live, grow, and reproduce.

Genes are made of sections of DNA. DNA is made of chemical building blocks called nucleotides. A gene consists of four different nucleotide bases, which can be sequenced in different ways.

Different sequences of bases determine different instructions, which account for various physical traits,like having blue eyes or brown eyes.

Changes in genes can lead to incorrectly formed proteins that can’t function correctly. These are called gene mutations and may lead to genetic disorders.

Researchers are studying genetic testing to be able to identify changes in a person’s DNA that may show if they are at risk for developing a disease or passing down a disease to their offspring.

https://www.medicalnewstoday.com/articles/120574#summary

Your genes affect many things about you, including how you look (for example, your eye colour orheight) and how your bodyworks (for example,your blood type). In some cases, your genes are linked to diseases that run in your family. In other cases, your genes influence how your body reacts to health conditions, such as infections; to medicinesor other treatments for health conditions; or to certain behaviours, such as smoking or alcohol use.

Better understanding of how genes affect health can improve health in many ways. Knowingif someone has a genetic differencethat makes them more likely to get a disease can helpthem take steps to prevent the disease or find it earlier,when it is easier to treat. If someone already has symptoms of a diseaseor condition, finding out the genetic difference that causes that disease or condition can help the healthcare provider understand what health outcomes the person mighthave in the future. Improved understanding of how genes are linked to disease can lead tobetter treatments for those diseases.

This page provides information about basic genetic concepts such as DNA, genes, chromosomes, and gene expression.

Terms to know

DNA

DNA (which is short for deoxyribonucleic acid) contains the instructions for making your body work. DNA is made up of two strands that wind around each other and looks like a twisting ladder (a shape called a double helix). Each DNA strand includes chemicals called nitrogen bases, which make up the DNA code.There are four different bases, T (thymine), a (adenine), C (cytosine), and G (guanine).

Each base on one strand of DNA is paired with a base on the other strand. The paired bases form the "rungs of the DNA ladder".

The bases are in different orders on different parts of the DNA strand. DNA is "read" by the order of the bases that is by the order of the Ts, cs,gs, and as. The order of these bases is what is known as the DNA sequence. The DNA in almost all living things is made up of the same parts. What's different is the DNA sequence.

Inheritance

Genetic inheritance is the process of passing down DNA from parents to children.

Genome

Your genomeis all of the DNA in your body.

Chromosomes

DNA is packaged into small units called chromosomes. A chromosome contains a single, long piece of DNA with many different genes. You inherit your chromosomes from your parents. Chromosomes come in pairs. Humans have 46 chromosomes, in 23 pairs. Children randomly get one of each pair of chromosomes from their mother and one of each pair from their father. There are22 pairs of numberedchromosomes, called autosomes, and the chromosomes that form the 23rd pair are called the sex chromosomes. They determine if a person is born a male or female.A female has two X chromosomes, and a male has one X and one Y chromosome. Each daughter gets an X from her mother and an Xfrom her father. Each son gets an X from his mother and a Y from his father.

Genes and proteins

Each chromosome has many genes. Genes are specific sections of DNA that have instructions for making proteins. Proteins make up most of the parts of your body and make your body work the right way.

You have two copies of every gene. You inherit one copy from your father and one copy from your mother. The genes people inherit from their parents can determine many things. For example, genes affect what a person will look like and whether the person might have certain diseases.

Alleles

Alleles are forms of the same gene that may have small differences in their sequence of DNA bases. These differences contribute to each person's unique features. Each person has two alleles for each gene, one from each parent. If the allelesof a gene are the same, the person is considered homozygous for thegene. If the alleles are different, the person is considered heterozygous for the gene.

Most of the time, differences between alleles do not have much of an effect on the protein that is made. However, sometimes different alleles can result in differences in traits, such as blood type.Some alleles are associated with health problems or genetic disorders. In these alleles, the differences in the sequence of DNA basesaffects the body's ability to makea certain protein.

Because your genes were passed down from your parents, you and your familymembers share many gene alleles. The moreclosely related you are, the more gene alleles you have in common.

Cells

Cells are the basic units of life. The human body contains trillions of cells. There are many different types ofcells that make up the many differenttissues and organs in the body. For example, skin cells,blood cells, heart cells, brain cells, and kidney cells are just a few of the cell types that perform differentvital functions in the body.

The basic structure of acell is a jelly-like substance known as cytoplasm, which is surrounded by a membrane to hold it together. Within the cytoplasm are various specialized structures that are importantto the work of the cell. One of these structures is the cell nucleus, which contains the DNA packaged in chromosomes.

Gene expression

Gene expression refers to the process of making proteins using the instructions from genes. A person's DNA includes many genes that have instructions for making proteins. Additionally, certain sections of DNA are not part of a gene butare important in making sure the genes are working properly. These DNA sections provide directions about where in the body each protein should be made, when it should be made, and how much should be made.

For the most part, every cell in a person's body containsexactly the same DNA and genes, but inside individual cells some genes are active ("turned on") while others are not. Differences in how genes are used (expressed) to make proteinsare why the different parts of your body look and work differently. For example, gene expression in the muscles is different from gene expression in the nerves.

Gene expression can change as you age. Also, your behaviours, such as smoking or exercise, or exposures in your environment can affect gene expression.

DNA methylation

DNA methylation works by adding a chemical (known as a methyl group) to DNA. This chemical can also be removed from the DNA through a process called demethylation. Typically, methylation turns genes "off" and demethylation turns genes "on."

DNA methylation is one of the ways the body controlsgene expression. Methylation and demethylation do not change the DNA code (the sequence of the DNA bases), but theyhelp determine how much protein is made.

Genetic change(mutation, gene variant,genetic variant)

A geneticchange (sometimes called a mutation, gene variant, or genetic variant) is a change in a DNA base sequence. While not all genetic changes will cause problems, sometimes, changes in genes can leadto changes in proteins and then the proteins don't work the way they are supposed to. This can lead to disease.

Some genetic changes can be passed on from parent tochild (inherited). These genetic changes occur in the germ cells, which are the cells that create sperm or eggs. Genetic changes that occur in the other cells in the body(known as somatic cells) donot get passed on to a person's children.

Genetic changes happen when new cells are being made and the DNA is copied. Also, exposures, such as high levels of radiation, can damage the DNA and cause genetic changes. However, most exposures will not result in genetic changes because each cell in the body has a system in place to check for DNA damage and repair the damage once it's found.

Copy number variation(CNV)

Copy number variation (CNV) refers to a feature of the genome, inwhich various sectionsof a person's DNA are repeated. While this happens in all people, the number of repeats (or copies) varies from one personto the next. CNVs play an important role in creatinggenetic diversity in humans.

However, some CNVs are linked to diseases.

Environmental factors

Environmental factors include exposures related to where we live, such as air pollution; behaviours, such as smoking and exercise; and other health-related factors, such as the foods that we eat.

Epigenetics
Epigenetics refers to the ways a person's behaviours and the environment can cause changes that affect the way the genes work. Epigenetics turns genes "on" and "off" and thus is related to gene expression.

Epigenetics change as people age, bothas part of normal development and aging and because of exposure to environmental factors that happen over the course of a person's life. There are several different ways an environmental factor can cause an epigenetic change to occur. One of the most commonways is by causing changes to DNA methylation. DNA methylation works by adding a chemical(known as a methylgroup) to DNA. This chemical can alsobe removed from the DNA through a process called demethylation. Typically, methylation turns genes "off" and demethylation turns genes "on." Thus, environmental factors can impact the amount of protein a cell makes. Less proteinmight be made if an environmental factor causes an increasein DNA methylation, and more proteinmight be made if a factor causes an increasein demethylation.
The translation is the processof the conversion of nucleicacid information into amino acids. This genetic information is encrypted in the form of a code called genetic code or codon. The genetic code is a set of information encodedin the sequence of nucleic acids that does the coding for proteins to be synthesized. Any change in genetic codes might lead to mutation.
Let us understand mutation in terms ofgenetic codes.

Genes are the functional units of the heredityof organisms. The sudden change in the DNA sequence is called a mutation. It is mainly responsible for the structural and functional changes and for the variation in organisms which could be good or bad. Even a minute change in the DNA sequence could alter the amino acids to be produced and proteins to be synthesized.
The genetic code is a dictionary that corresponds with the sequenceof nucleotides and sequence of Amino Acids

The phenomenon of change occurring within the DNA sequence is termed as the mutation. This is mainlycaused either by the internal factors or through externalfactors,

All the above study show that our genetic code is depend on remineralisations, mutations, methylation and

Apart from this our genes change by nature environment, behaviour, thinking process, activities, social environment.

The salivary proteome consists of thousands of proteins, which include, among other, hormonals modulators of energy intake and output. Although the functions of this prominent category of hormones in whole body energy metabolism are well characterized, their functions in the oral cavity, whetheras a salivary component, or when expressed in teste cells, are less studied and poorly understood. The respective receptors for the majority of salivary metabolic hormones have been also shown to be expressed in salivary glands, taste cells, or other cells in the oral mucosa. This review provides a comprehensive account of the gastrointestinal hormones, Adipokines, and neuropeptides identified in saliva, salivary glands, or lingual epithelium as well as their respective cognate receptors expressed in the oral cavity. Surprisingly, few functions are assigned to salivary metabolism hormones, and these functions are mostly associated with the modulation of taste perception. Because of the well-characterized correlation between impaired oral nutrient sension and increasedenergy intake and body mass index, a conceptually provocative point of view is introduced

whereupon it is argued that targeted changes in the composition of saliva cloud affect whole body metabolism in responseto the activation of cognate receptorsexpressed locally in the oral mucosa.

Insulin in saliva

The hormone insulin, produced by pancreatic B-cells of the islets of Langerhans is the main hormones controlling carbohydrate and lipid metabolism. insulin-like immune reactivity has been extensively reported in rodent   salivary glands, human parotid and submandibular salivary glands and human saliva Fasting salivary insulin levels are lower in saliva than plasma, both increased following food intake but the rise in saliva was slower and less marked than in plasma In addition, salivaryinsulin remains unchanged following a sham-fed meal. These findings are consistent with insulin in saliva being an ultra-filtrate of that circulating in blood. The observation that salivary insulin has been shown to increase following an i.e. injection of insulin in humans supports this hypothesis. On the other hand, both immune reactive insulin and insulin mRNA have been found in the salivary glands of mice andimmune reactive insulin secretion from mouse salivary glands is sensitive to changes in glucose concentrations It is therefore possible that the insulin found in saliva could be the product of local synthesis

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3530011/

Develops, as well as the organisminternal world, which includessuch factors as its hormonesand metabolism. One major internal environmental Can naturechange our genome?

The expression of genes in an organism can be influenced by the environment, including the external world in which the organism is located or influence that affects gene expression is gender, as is the case with sex – influenced and sex-limited traits. Similarly, drugs, chemicals temperature, and light are amongthe external environment factors that can determine which genes are turned on and off, thereby influencing the way an organism develops and functions.

https://www.nature.com/scitable/topicpage/environmental-influences-on-gene-expression-536

Hormones

Hormones are chemical messengers that co-ordinate different functions in your body. Several glands, organs and tissues make and release hormones, many of which make up your endocrinesystem.

Hormones are chemicalsthat co-ordinate differentfunction in your body by carrying messagesthrough your blood to your organs,skin, muscles and other tissues. These signals tell your body what to do and when to do it. Hormonesare essential for life and your health.

Hormones and most of the tissues (mainly glands) that create and releases them make up your endocrine system. Hormones control many different bodily processes, including:

  • Metabolism
  • Homeostasis (constant internal balance) such as blood pressure and blood sugar regulation, fluid water and electrolyte balance and body temperature.
  • Growth and development.
  • Sexual function.
  • Reproduction.
  • Sleep-wake cycle.
  • Mood.

With hormones, a little bit goes a long way. Because ofthis, minor changes in levelscan cause significant changes to your body and lead to certain conditions that require medical treatment.

What do hormonesdo?

Hormones are chemical messenger that affect and manage hundredsof bodily processes. Often, a bodily processinvolves a chain reactionof several different hormones.

A hormones will only act on a part of your body if it “fits”_ if the cells in the target tissues have receptors that receive the massage of the hormone.Think of a hormones as a key and the cells of its target tissue, as specially shaped locks. If the hormone fits the lock (receptor) on the cell wall, then it’ll work; the hormones will deliver a massage that causes the target site to take specificaction.

Your body uses hormones for two types of communication. The first type is communication betweentwo endocrine glands: one gland releases a hormone,which stimulates another gland to change the level of hormones that it is releasing. An example of this is the communication between your pituitary gland and thyroid. Your pituitary gland release thyroid- stimulating hormones, which triggers your thyroid gland to release its hormones, which then affect various aspectsof your body.

The second type of communication is between an endocrine gland and a target organ. An exampleof This is when your pancreas releasesinsulin, which then acts on your muscles and liver to help process

Glucose.

Serotonin: -

Tears are extracellular fluid secreted from the lacrimal gland (LG). Tears consist of a dynamic tri- layered film composed of secretions from the LG, Meibomian gland, and conjunctival goblet cells. The LG secretesthe aqueous component of the tear, the Meibomian gland secretes the lipid component, and conjunctival goblet cells secrete mucin. The regulation of LG activity via the autonomic nervous system has been recognized as fundamental to maintaining aqueous tear flow. Here, we describe the role of a hormone, peripheral serotonin, in tear secretion.We found that blood serotonin concentration, changed by feeding a diet deprivedof the serotonin precursor tryptophan, correlated with tear secretion, and that a sustained decrease in serotonin resulted in LG atrophy and autophagy. The combination of a decrease in serotonin with the interruption of autonomic neural stimuli to the LG preceded these alterations. Furthermore, we found that the serotonin type 3a receptor expressedin LG acinar cells is involved in tear secretion via intracellular calcium mobilization. Our findings demonstrate that hormonalregulation by serotonin, in cooperation with the autonomicnervous system, regulatestear secretion.

Can genetic modification occur naturally?

Genes from one species also can naturally integrate into the genomes of more distant relatives under certain conditions. Some food plants can carry genes that originate in different species, transferred both by nature and by human intervention.

How do genetic mutations occur naturally?

Mutations result either from errors in DNA replication or from the damaging effectsof mutagens, such as chemicalsand radiation, which react with DNA and changes the structures of individual nucleotides. All cells possess DNA-repair enzymes that attempt to minimize the numbers of mutations that occur.

Can food change your genes?

Put simply, what you eat won’t changes the sequenceof your DNA, but your diet has a profound effect on how you “express” the possibilities encoded in your DNA. The foods you consume

can turn on or off certain genetics makers which play a major- and even life or death – role in your health outcomes.

What destroys DNA in the body?

Endogenous sources of DNA damage include hydrolysis, oxidation, alkylation, and mismatch of DNA bases; sources for exogenous DNA damages include ionizing radiation (IR), ultraviolet (UV) radiation, and various chemicalsagents.

How to repair DNA damage naturally?

Studies have shown that the consumption of anti-oxidation micronutrients reduced the level of DNA damage or improved DNA repair efficiency. Moreover, micronutrients are important for maintaining genome stability.

How to make DNA strong?

Still, meat, fish and dairy are high in DNA- protective nutrients like carnitine, NADH and coenzyme Q10. Ifyou do eat meat, focus on fish, especially fatty fish like salmon and sardines; some research suggeststheir omega-3s can ward off DNA damage in vascular cells.

Effectsof eating disorders: -

  1. Thinning of the bones (osteopenia or osteoporosis).
  2. Mild anaemia muscle wasting and weakness. (3)Brittle hair and nails.
  3. Dry and yellowish skin.
  4. Growth of fine hair all over the body (lanugo). (6)Severe constipation.

(7)Severe diarrhoea,(8)Low blood pressure. (9)High bloodpressure.

  1. Slowed breathing and pulse.
  2. Damage to the structure and function of the heart.(12)Brain damage.
  3. Multi-organ failure.
  4. Drop and increase in internal body temperature. (15)Lethargy, sluggishness, or feeling tired all the time. (16)Infertility.

(17)Obesity. (18)Bloodcholesterol.

(19) MetabolicDisorders. (20)Endocrinal gland disorders. (21)Mental health.

(22)D N A &genes and immunityIntra uterine growth retarded. (23)Premature baby.

  1. Habitual abortions.
  2. Calcium disorders.
  3. Uric acid disorders. (27)Tumours & boils in the body.
  4. Thalassemia.
  5. Multiply Myelomaetc.

Eating disorders can affect people of all ages, racial/ethnic backgrounds, body weights, and genders. One approach involves the study of human genes. Eating disorders run in families commonin diabetes study.

Produced in salivary glands, human saliva comprises 99.5% water but also contains many important substances, including electrolytes, mucus, antibacterial compounds and various enzymes [1]

medically constituents of saliva can noninvasively provide important diagnostic information related to oral and systemicdiseases. [6]

Water: 99.5%

Electrolytes

0 2–21 mole/L sodium (lower than blood plasma) 1–36 mole/L potassium (higher than plasma) 1.2–

2.8 mole/L calcium (similarto plasma) 0.08–0.5mole/L magnesium540 mole/L chloride (lower than plasma)25 mole/L bicarbonate (higher than plasma) 1.4–39 mole/L phosphate

  • Iodine (mole/L concentration is usually higher than plasma, but dependent variable according to dietary iodine intake) Mucus (mucus in saliva mainly consists of muco-polysaccharides and glycoproteins) Antibacterial compounds (thiocyanate, hydrogenperoxide, and secretory immunoglobulin A) Epidermal growth factor (EGF)
  • Saliva eliminates caesium, which can substitute for potassium in the cells. [7] [8]

o Various enzymes; most notably:α-amylase (EC3.2.1.1), or ptyalin, secreted by the acinar cells of the parotid and submandibular glands, start the digestion of starch before the food is even swallowed; it has a pH optimumof 7.4Lingual lipase, which is secreted by the acinar cells of the sublingual gland; has a pH optimum around 4.0 so itis not activated until entering the acidic environment of the stomach Kallikrein , an enzyme that proteolytic ally cleaves high-molecular-weight kininogento produce bradykinin, which isa vasodilator; it is secreted by the acinar cells of all three major salivary glands

Antimicrobial enzymes that kill bacteria Lysozyme Salivarylactoperoxidase Lactoferrin [9Immunoglobulin A [9] Praline-rich proteins (function in enamel formation, Ca2+-binding, micro be killingand lubrication) [9]

  • Minor enzymes including salivary acid phosphatases A+B, N-acetylmuramoyl-L-alanine amidase, NAD(P)H dehydrogenase (Quinone), superoxide dismutase, glutathione transferase, class 3 aldehyde dehydrogenase, glucose-6-phosphate isomerase, and tissue kallikrein (function unknown)[9]Cells: possiblyas many as 8 million humans and 500 million bacterial cells per mole. The presence of bacterial products (small organic acids, amines, and thiols) causes saliva to sometimes exhibit a foul odour. Opiorphin, a pain-killing substance found in human saliva, is Haptocorrin, a protein that binds to vitamin B12 to protect it against degradation in the stomachbefore it binds to intrinsic factors.

Hormones and leptin regulate the food-eating process and another metabolism system. Complete leptin deficiency results in the clinical phenotypes of severe obesity, impaired satiety, intensive hyper phagia, constant food-seeking behaviour, recurrent bacterial infections, hyperinsulinemia, liver steatosis, dyslipidaemia, and hypogonadotropic hypogonadism. At eating time it takes 15 to 20 minutesto secrets.

Question: - What are metabolicdisorders?

Answer:- Metabolic disordersare biochemical and physiological abnormalities

It occurs when the breakdown of food into its components becomes disrupted. All the chemical processes continuously go inside the body allowing life and normal functioning. There are two categories of metabolism: catabolism and anabolism.

Catabolism is the breakdown of organic matter, and anabolism uses energy to construct components of cells, such as proteins, carbohydrates and nucleic acids.

Any diseasehas stages like 1st 2nd and 3rd. In the 1st stage all problems are simple, 2nd stage it get resistance and in the 3rd stage, all problemsare dangerous.

Each and every hormone secretedin our body. We must know the timing and occasions.

Conclusions: -

We see that when we are in deep sorrow or weeping that time the tears come out naturally. When we keep any foodstuff in our mouth then the flow of saliva increases in our mouth. It is a natural process. All our endocrine glands do the same kind of work but it's required to maintain our lifestyle and habits

After the above study, we see that our DNA changes and gets damaged, and repaired by natural processes, kinds of food, habits, narcotic items and many other factors.

Can we correctour metabolic disorders by changing our eating habits?

We must know our eating time, how much time we spend sitting to eat, and how much time we invest in chewing the foodstuffs that are mixed with our saliva. Then all processes like remineralisations, biosynthesis, methylation and mutations work nicely. If our food is not mixed with food properly with our saliva, the imbalance of minerals occurs in our body and some parts of our body. An endocardial gland malfunctions the whole ecosystem of the body which is disturbed. If we do not change our habits, we will have difficulties, and these habits, abnormalities, and things will affect our unborn children. This type of problem is increasing day by day. We are seeing that our inborn children suffer from metabolic disorders from birth time, like diabetes, etc. We must eat at least 20 to 25 minutes and chew one bite 60 to 70 times. In this way, all viruses killed by our saliva and many other vitamins not present in our food will be by chemical reactions in our saliva we can get. But it is a very tough task to change the habits of human beings, Because of these behaviours and less chewing in our genes. These habits will go to our offspring, through genes. I experimented on this topic with about 20 people, and they told me orally that our digestive system is quite good. They feel more energetic. The flow of saliva adds more taste to the food and creates a flavour of sweetness. They feel comfortin their stomachs. They feel eager to food on time. They also say that

the excreta exits easily without any pressure. Usually, people don’t take nutrient food for the natural growth of the body. They forget that they should follow the methodology of chewing. Here, I would to say that due to the non-availability of high research laboratory facilities at my home place, I have not produced the survey report of the above twenty people of my area, who hail from the area- Sugauli Block, East-Champaran, Bihar.

It is my finding that by using my method,people can protectthe next generations from many

diseases and metabolic disorders "Habits is a Second Nature “I request all people. Please read my book and follow the eating and drinkingrules. Then we canachieve victory over metabolic disorders.

References

Clinical Trials and Clinical Research: I am delighted to provide a testimonial for the peer review process, support from the editorial office, and the exceptional quality of the journal for my article entitled “Effect of Traditional Moxibustion in Assisting the Rehabilitation of Stroke Patients.” The peer review process for my article was rigorous and thorough, ensuring that only high-quality research is published in the journal. The reviewers provided valuable feedback and constructive criticism that greatly improved the clarity and scientific rigor of my study. Their expertise and attention to detail helped me refine my research methodology and strengthen the overall impact of my findings. I would also like to express my gratitude for the exceptional support I received from the editorial office throughout the publication process. The editorial team was prompt, professional, and highly responsive to all my queries and concerns. Their guidance and assistance were instrumental in navigating the submission and revision process, making it a seamless and efficient experience. Furthermore, I am impressed by the outstanding quality of the journal itself. The journal’s commitment to publishing cutting-edge research in the field of stroke rehabilitation is evident in the diverse range of articles it features. The journal consistently upholds rigorous scientific standards, ensuring that only the most impactful and innovative studies are published. This commitment to excellence has undoubtedly contributed to the journal’s reputation as a leading platform for stroke rehabilitation research. In conclusion, I am extremely satisfied with the peer review process, the support from the editorial office, and the overall quality of the journal for my article. I wholeheartedly recommend this journal to researchers and clinicians interested in stroke rehabilitation and related fields. The journal’s dedication to scientific rigor, coupled with the exceptional support provided by the editorial office, makes it an invaluable platform for disseminating research and advancing the field.

img

Dr Shiming Tang

Clinical Reviews and Case Reports, The comment form the peer-review were satisfactory. I will cements on the quality of the journal when I receive my hardback copy

img

Hameed khan