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Abstract 

The article focuses on the role of average blood glucose level (GLU) on some brain stroke patients based on 750 

real study subjects consisting of both normal and brain stroke patients. The current outcomes have been derived 

herein using joint statistical modeling. It is derived herein that mean GLU level is positively associated with the 

joint interaction effect (JIE) of age and stroke (STR) i.e., AGE*STR (P=0.0432), JIE of hypertension (HYP) and 

residence type (RES) i.e., HYP*RES (P=0.0261), while it is negatively associated with the JIE of smoking (SMO) 

status and HYP i.e., SMO*HYP (P=0.0206),  ever married (MAR) and  heart disease (HRT) status i.e., MAR*HRT 

(P<0.0001). In addition, variance of GLU level is positively associated with HYP (P<0.0001), HRT (P=0.0327), 

JIE of MAR and STR i.e., MAR*STR (P=0.0327), while it is negatively associated with the JIE of HYP and MAR 

i.e., HYP*MAR (P=0.0001). There are many more associations of GLU levels with many other factors for brain 

stroke patients in the both mean and variance models. It can be concluded that average GLU levels maintain very 

complicated roles with several heart disease risk factors, physical and lifestyle factors. The brain stroke treatment 

process may be benefitted using the present derived complicated associations of glucose levels with the other 

factors. For all common people, the report informs about the controlling of GLU levels, BMI and smoking at older 

ages.    

Keywords: average blood glucose (glu); body mass index (bmi); brain stroke (str); hypertension (hyp); heart 

disease (hrt) status; joint generalized linear models (jglms) 

 1.Introduction 

Hyperglycemia (or elevated average blood glucose levels) is one of the 

most common the early phases of comorbidities in ischemic stroke, which 

is associated with brain infarct growth, worsened neurological outcomes 

and hemorrhagic transformation [1-5].  Many clinical and experimental 

stroke research studies have established thromboinflammation as a key 

mediator of ischemic stroke brain damage [6,7]. The hyperglycemia 

prevalence, defined as blood glucose level > 6.0 mmol/L (or 108 mg/dL), 

has been commonly observed in two thirds of all ischemic stroke subtypes 

on admission and in at least 50% in each subtype including lacunar strokes 

[4,5,8]. It is considered that hyperglycemia facilitates 

thromboinflammation by exciting the endothelium, neutrophils and 

platelets [9, 10]. In the setting of stroke, it was shown to weaken post-

stroke cerebral blood flow, smash the blood–brain barrier, and cause 

hemorrhagic transformation [4, 5, 11-14]. Even so, the exact mechanisms 

underlying these investigations are incompletely understood [7,15, 16]. 

Brain stroke symptoms and signs may include an inability to move fully, 

or feel on one side of the body, speaking & understanding problems, or 

one side vision loss, or dizziness etc. These brain stroke symptoms and 

signs often appear soon after the stroke has happened. If these symptoms 

and signs stay less than one or two hours, the brain stroke is a transient 

ischemic attack (TIA), also known as a mini-stroke. Note that a 

hemorrhagic stroke may also be related to a severe headache [17,18]. Then 

these brain stroke symptoms and signs can be extended for a long time.  

Long-term complications may include loss of bladder control and 

pneumonia [19, 20]. High blood pressure is the main risk factor for stroke.  

There are many other risk factors such as high blood cholesterol, obesity, 

tobacco smoking, diabetes mellitus, atrial fibrillation, end-stage kidney 

disease, etc. An ischemic stroke is generally caused by a blood vessel 

blockage, though there are also less common causes [8, 17, 18, 21]. On the 

other hand, a hemorrhagic stroke is caused by either bleeding into the space 

between the brain's membranes or directly into the brain. Bleeding may 

generally occur due to a ruptured brain aneurysm [9, 10, 19-21]. The 

diagnosis of a brain stroke is generally based on a physical examination, 

which is supported by medical imaging such as an MRI scan or CT scan. 

Note that a CT scan can leave out bleeding, but may not necessarily leave 

out ischemia, which early on generally does not show up on a CT scan. 
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Some other tests such as blood tests and an electrocardiogram (ECG) are 

performed to locate the risk factors and leave out the other possible causes. 

Also, low blood sugar may cause the same symptoms. Many earlier studies 

have focused on the blood glucose (GLU) level effects on the brain stroke 

patients using simple bivariate correlation, meta-analysis, multiple 

regression analysis, and machine learning techniques etc. [2,4,5, 8,17, 19, 

21]. The current data set is a physiological data set, which is generally 

heteroscedastic in nature.   The previous reports do not consider that the 

considered brain stroke data set is of a heteroscedastic nature. So, most of 

the earlier reports invite many debates and doubts. Moreover, the previous 

reports do not use any appropriate model fitting diagnostic tools on their 

final selected models, which may be doubtful. So, the research may not 

have a good faith on all the outcomes related to the earlier doubtful models. 

The roles of average blood glucose levels on the brain stroke patients are 

very few investigated based on probabilistic modeling. The current report 

searches for the following research hypotheses.    

• Is there any association of GLU levels with cardiac risk factors, physical 

and lifestyle factors for brain stroke patients?  

• If it is affirmative, how can we derive the most probable GLU levels 

association model?  

• What is the most probable GLU levels statistical model? 

• What are the effects of GLU levels on the brain stroke patients?  

The current report searches the above research hypotheses considering the 

following sections such as materials & methods, statistical analysis & 

results, discussions, and conclusions. The current derived GLU levels 

statistical model is shown in Table 1 using the considered data set that is 

reported in the materials section. The statistical GLU levels mean and 

variance models are developed by joint generalized linear models 

(JGLMs), which is shortly reported in the methods section. The current 

derived outcomes are illustrated in the results section, while the present 

results are illustrated in the discussion section. Based on the present 

derived GLU levels mean and variance statistical models, the present 

report has drawn some necessary information that are reported in the 

conclusions section. 

2. Materials and Methods 

2.1 Materials  

The current GLU levels statistical model is derived herein from a subset of 

750 random sample objects out of 4981 brain stroke and normal sample 

units. The present considered brain-stroke (a medical condition) data set is 

available in the site- 

https://www.kaggle.com/datasets/jillanisofttech/brain-stroke-dataset/data 

The data set contains basically normal subjects and patients of the brain 

strokes, which are mainly two types, one is stroke ischemic, due to lack of 

blood flow, and the other is hemorrhagic, due to bleeding. These two types 

of brain strokes cause parts of the brain to stop functioning properly. The 

current considered brain stroke data set contains 11 study characters such 

as gender (or sex)  (male=0; female=1), age, hypertension (HYP) (no 

hypertension=0, hypertension=1), heart disease (HRT) (no heart disease= 

0, heart disease =1), ever-married (MAR) (no married=0; married=1), 

work type (WOK) (Govt job=1; private=2; self-employed=3; children=0), 

residence-type (RES) (rural=0; urban=1), average glucose level in blood 

(GLU), body mass index (BMI), smoking-status (SMO) (never smoke=1; 

former=1; smoker=3), stroke (STR) (no stroke=0; stroke=1). 

2.2 Statistical Methods  

The present study considers average blood glucose (GLU) level is the 

targeted response random variable that is to be modeled with the remaining 

cardiac, lifestyle and physical characteristics. It is examined that the 

response GLU level is non-normally and heteroscedastic distributed 

random variable. The variance of GLU level can’t be stabilized with the 

help of any suitable transformation, therefore it is modeled in the current 

article using joint generalized linear models (JGLMs) under both the 

gamma and log-normal distribution that is clearly described in [22-25]. A 

detailed discussion about JGLMs is given in the book by Lee, Nelder and 

Pawitan [22]. JGLMS for both the log-normal and gamma distribution are 

shortly reported herein. JGLMs for log-normal distribution: For the 

positive response Yi (=GLU) with E(Yi=GLU) = µi (mean) and Var 

(Yi=GLU) = µi2 =    say, where   ’s are dispersion parameters and V () 

reveals the variance function. Generally, log transformation Zi = log 

(Yi=GLU) is adopted to stabilize the variance Var (Zi) ≈, but the variance 

may not always be stabilized [26]. For developing a GLU improved model, 

JGLMs for the mean and dispersion are considered. For the response GLU, 

assuming log-normal distribution, JGL mean and dispersion models (with 

Zi = log (Yi=GLU)) are as follows:  

 E(Zi)= µzi and Var (Zi) = σzi2, 

µzi=xit β    and   log (σzi2) = git γ,                                         

where xit and git are the explanatory factors/variables vectors of GLU 

associated with the mean regression coefficients β and dispersion 

regression coefficients γ, respectively.   

JGLMs for gamma distribution: In the above stated Yi’s (=GLU), the 

variance has two portions such as (based on the mean parameters µi’s) and 

(free of µi’s). The variance function V () displays the GLM family 

distributions. For instance, if V () = 1, it is normal, Poisson if V () =, and 

gamma if V () =    etc. Gamma JGLMs means and dispersion models of 

GLU are as follows: and, where and are the GLM link functions attached 

with the mean and dispersion linear predictors respectively, and, are the 

explanatory factors/variables vectors of GLU attached with the mean and 

dispersion parameters respectively. Maximum likelihood (ML) method is 

used for estimating the mean parameters, while the restricted ML (REML) 

method is applied for estimating the dispersion parameters, which are 

explicitly stated in the book by Lee, Nelder and Pawitan [22].   

3. Statistical analysis & Results 

3.1 Statistical Analysis 

The report aims to derive the effects of average blood glucose (GLU) 

levels on the brain stroke patients. Probabilistic model of GLU levels has 

been derived on the remaining 10 explanatory variables such as heart 

disease related parameters (hypertension (HYP), subject’s heart disease 

status (HRT), subject’s stroke status (STR)), physical parameters (SEX or 

GEN, AGE, BMI), social & lifestyle parameters (residence type (RES), 

work type (WRK), ever married (MAR), smoking status (SMO)). Final 

GLU levels model has been accepted based on the smallest Akaike 

information criterion (AIC) value (within each class) that reduces both the 

squared error loss and predicted additive errors [27, p. 203--204]. Based 

on the AIC rule, JGLMs Log-normal fit (AIC= 6387.836) is better than 

gamma fit (AIC=6413.285). Table 1 presents the summarized JGLMs 

results of the GLU levels analysis of both the mean and variance models 

under both the log-normal and gamma distribution. 

In both the mean and variance models some insignificant marginal effects 

such as SEX (or GEN), SMO, HYP (in mean model) and AGE, BMI (in 

variance model) are included in the Log-normal fitted model due to the 

marginality rule of Nelder [28]. According to the marginality of Nelder 

[28], if any higher order interaction effect is significant, then all its lower 

order interaction effects and marginal effects should be included in the 

model. For example, in the Log-normal fitted mean model (Table 1), 



Clinical Reviews and Case Reports                                                                                                                                                                                             Page 3 of 8 

SEX*SMO is significant (P=0.0078), so the insignificant marginal effects 

SEX (P=0.7704) and SMO (P=0.2132) should be included in the model. 

Similarly, for other insignificant effects in the final selected Log-normal 

model. The generated GLU levels Log-normal fitted probabilistic JGLM 

(Table 1) is a data derived model that is to be examined by model checking 

tools. All the valid conclusions about GLU levels are obtained from the 

data derived Log-normal fitted GLU levels probabilistic model (Table 1) 

that should be taken based on appropriate graphical diagnostic tools, which 

is displayed in Figure 1. Figure 1(a) presents the absolute residuals plot for 

the Log-normal fitted GLU levels model (Table 1) with respect to the fitted 

values, which is almost flat linear except the right tail, indicating that 

variance is constant with the running means. Note that the right tail is little 

increasing as a large absolute residual value is located at the right 

boundary.  Figure 1(b) reveals the normal probability plot for the Log-

normal fitted GLU levels mean model (Table 1) that does not reflect any 

lack of fit. So, both the figures 1(a) and (1b) do not show any discrepancy 

in the Log-noraml fitted GLU levels model (Table 1). The above Figure 

1(a) and Figure 1(b) confirm that the Log-normal fitted GLU levels model 

is an approximate form of the unknown true GLU levels model. 

 
Figure 1 (a)       Figure 1 (b) 

Figure 1: For the joint Log-normal fitted models of average glucose level in blood (glucose) (Table 1), the (a) absolute residual plot with 

the fitted values, and (b) the normal probability plot for mean model 

3.2 Results 

Table 1 displays the summarized results. Based on AIC rule, Log-normal 

fitted JGLM gives better results than Gamma fitted model. So, the final 

selected GLU levels model is Log-normal fitted JGLM. There are some 

discrepancies between these two fitted GLU levels models (in Table 1). 

The general discrepancies between Log-normal and Gamma fitted models 

are well discussed in [29, 30].  Herein the Log-normal fitted (Table 1) 

outcomes are presented, as its AIC value is lower than the Gamma fit. 

The associations between the mean GLU levels and heart disease related 

parameters are illustrated in the following lines. It is derived herein that 

mean GLU levels is positively associated with the joint interaction effect 

(JIE) of age and stroke (STR) i.e., AGE*STR (P=0.0432), while both the 

marginal effects AGE (P=0.0004) and stroke (STR) (P=0.0942) are 

negatively associated with the mean GLU levels. Mean GLU levels is 

negatively associated with the JIE of smoking status (SMO) and 

hypertension (HYP) i.e., SMO*HYP (P=0.0206), while both the marginal 

effects SMO (P=0.2132) and HYP (P=0.1681) are insignificant. Mean 

GLU levels is negatively associated with the JIE of ever married (MAR) 

and subject’s heart disease status (HRT) i.e. MAR*HRT (P<0.0001), while 

it is negatively associated with the marginal effect MAR (P=0.0002), and 

it is positively associated with the marginal effect HRT (P<0.0001).  Mean 

GLU levels is positively associated with the JIE of HYP and subject’s 

residence type (RES) i.e., HYP*RES (P=0.0261), while it is negatively 

associated with the marginal effect RES (P=0.0295), but it is insignificant 

of HYP (P=0.1681).  The associations between the mean GLU levels and 

physical & social parameters are given in the following lines. Mean GLU 

levels is positively associated with the JIE of age and BMI i.e., AGE*BMI 

(P=0.0032), while it is negatively associated with both AGE (P=0.0004) 

and BMI (P=0.0.0090). Mean GLU levels is negatively associated with the 

JIE of sex (or gender) and SMO i.e., SEX*SMO (P=0.0078), while it is 

insignificant of both the SEX (P=0.7704) and SMO (P=0.2132). Mean 

GLU levels is positively associated with the JIE of AGE and MAR i.e., 

AGE*MAR (P<0.0001), while it is negatively associated with both the 

marginal effects AGE (P=0.0004) and MAR (P=0.0002). Also mean GLU 

levels is positively associated with the JIE of BMI and MAR i.e., 

BMI*MAR (P=0.0037), while it is negatively associated both of BMI 

(P=0.0090) and MAR (P=0.0002). Mean GLU levels is positively 

associated with the JIE of SMO and RES i.e., SMO*RES (P=0.0427), 

while it is negatively associated with RES (P=0.0295) and indifferent of 

SMO (P=0.2132). The associations between the GLU levels’ variance and 

heart disease related parameters are illustrated in the following lines. 

Variance of GLU levels is positively associated with HRT (P=0.0327). It 

is negatively associated with the JIE of HYP and MAR i.e., HYP*MAR 

(P=0.0001), while it is positively associated with the marginal effect HYP 

(P<0.0001) and negatively associated with MAR (P=0.0022). Also, 

variance of GLU levels is positively associated with the JIE of MAR and 

STR i.e., MAR*STR (P=0.0327), while it is negatively associated with 

both the marginal effects of MAR (P=0.0022) and STR (P=0.0123). The 

associations between the GLU levels’ variance and physical & social 

parameters are illustrated in the following lines. Variance of GLU levels is 

positively associated with the JIE of AGE and SEX i.e., AGE*SEX 

(P=0.0789), while it is negatively associated with the marginal effects SEX 

(P=0.0739) and insignificant of AGE (P=0.1561). Variance of GLU levels 

is positively associated with the JIE of AGE and MAR i.e., AGE*MAR 

(P=0.0010), while it is negatively associated with MAR (P=0.0022) and 
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insignificant of AGE (P=0.1561). Also, variance of GLU levels is 

positively associated with the JIE of BMI & MAR i.e., BMI*MAR 

(P=0.0579), while it is negatively associated with the marginal effect of 

MAR (P=0.0022) and insignificant of BMI (P=0.8337). From Table1, 

Log-normal fitted GLU levels mean (z) model is z = 5.0861 - 0.0123 age 

- 0.0162 bmi + 0.0003 age*bmi - 0.0100 gen2 + 0.0642 smoking2 - 0.1448 

gen2*smoking2 - 0.2124 stroke2 - 0.5640 emarried2 + 0.0056 

age*emarried2 + 0.0041 age*stroke + 0.1114 hypert2 - 0.2251 

smoking2*hypert2 + 0.6517 heartd2 - 0.5672 emarried2*heartd2 + 0.0135 

bmi*emarried2 – 0.0718 resi2 + 0.1063 smoking2*resi2 + 0.2135 

hypert2*resi2,  and from Table 1, the Log-normal fitted GLU levels 

variance (z) model is z = exp. (- 1.901 – 0.0124 age – 0.0047 bmi + 2.419 

hypert2 + 0.453 heartd2 – 0.634 gen2 + 0.0108 age*gen2 – 2.369 

emarried2 + 0.0294 age*emarried2 – 2.136 hypert2* emarried2 + 0.0458 

bmi* emarried2 – 1.208 stroke2 + 1.078 emarried2*stroke2). From the 

above GLU levels mean ( z) and variance ( z) models, it is observed that 

mean GLU levels is explained by many factors and their interaction effects 

such as age*bmi, gen2*smoking2, age*emarried2, age*stroke, 

smoking2*hypert2, emarried2*heartd2, bmi*emarried2, smoking2*resi2, 

hypert2*resi2, while the GLU levels variance is explained by age*gen2, 

age*emarried2, hypert2* emarried2, bmi* emarried2, and 

emarried2*stroke2.   

Model Covariates LOG-NORMAL FIT GAMMA FIT 

estimate s.e. t(618) P-value estimate s.e. t(618) P-value 

 

 

 

 

 

 

 

 

Mean 

constant  5.0861  0.1783  28.526 <0.0001  5.1904  0.1817  28.563 <0.0001 

age  -0.0123 0.0034  -3.559 0.0004  -0.0137  0.0035  -3.964 <0.0001 

bmi  -0.0162 0.0062  -2.621 0.0090  -0.0183  0.0063  -2.906 0.0038 

age*bmi  0.0003 0.0001  2.962 0.0032  0.0004  0.0001  3.286 0.0011 

gen 2  -0.0100 0.0342  -0.292 0.7704  -0.0076  0.0348  -0.218 0.8275 

smoking 2  0.0642 0.0515  1.246 0.2132  0.0726  0.0525  1.382 0.1675 

gen 2*smoking 2  -0.1448  0.0543  -2.667 0.0078  -0.1587  0.0552  -2.876 0.0042 

stroke 2  -0.2124  0.1267  -1.676 0.0942  -0.2479  0.1273  -1.947 0.0520 

emarried 2  -0.5640  0.1484  -3.799 0.0002  -0.6891  0.1508  -4.569 <0.0001 

age*emarried 2  0.0056  0.0014  4.038 <0.0001  0.0072  0.0014  5.146 <0.0001 

age*stroke 2  0.0041  0.0020  2.026 0.0432  0.0045  0.0020  2.196 0.0285 

hypert 2  0.1114  0.0807  1.380 0.1681  0.1487  0.0788  1.887 0.0596 

smoking 2*hypert 2  -0.2251  0.0970  -2.321 0.0206  -0.2525  0.0946  -2.667 0.0078 

heartd 2  0.6517  0.1223  5.328 <0.0001  0.6898  0.1174  5.875 <0.0001 

emarried 2 *heartd 2  -0.5672  0.1435  -3.953 <0.0001  -0.5794  0.1384  -4.187 <0.0001 

bmi*emarried 2  0.0135  0.0046  2.911 0.0037  0.0160  0.0047  3.421 0.0007 

resi 2  -0.0718  0.0329  -2.182 0.0295  -0.0762  0.0336  -2.271 0.0235 

smoking 2 *resi 2  0.1063  0.0523  2.031 0.0427  0.1135  0.0532  2.135 0.0331 

hypert 2 *resi 2  0.2135  0.0957  2.230 0.0261  0.2080  0.0934  2.227 0.0263 

 

 

 

 

 

 

 

Dispersion 

constant  -1.901  0.691  -2.75 0.0061 -1.786  0.686  -2.61 0.0093 

age  -0.0124  0.0087  -1.42 0.1561 -0.0137  0.0087  -1.58 0.1146 

bmi  -0.0047  0.0219  -0.21 0.8337 -0.0060  0.0217  -0.28 0.7796 

hypert 2  2.419  0.524  4.61 <0.0001 2.314  0.513  4.51 <0.0001 

heartd 2  0.453  0.211  2.14 0.0327 0.385  0.207  1.86 0.0634 

gen 2  -0.634  0.354  -1.79 0.0739 -0.680  0.351  -1.94 0.0528 

age*gen 2  0.0108  0.0061  1.76 0.0789 0.0115  0.0061  1.89 0.0592 

emarried 2  -2.369  0.773  -3.07 0.0022 -2.246  0.766  -2.93 0.0035 

age*emarried 2  0.0294  0.0089  3.29 0.0010 0.0295  0.0089  3.32 0.0009 

hypert 2 *emarried 2  -2.136  0.554  -3.86 0.0001 -2.098  0.542  -3.87 0.0001 

bmi*emarried 2  0.0458  0.0241  1.90 0.0579 0.0426  0.0239  1.78 0.0756 

stroke 2  -1.208  0.481  -2.51 0.0123 -1.232  0.477  -2.59 0.0098 

emarried 2 *stroke 2  1.078  0.504  2.14 0.0327 1.076  0.499  2.15 0.0319 

AIC 6387.836 6413.285 

 

Table 1: Results for mean and dispersion models for glucose from Log-normal & Gamma fit. 

 

4. Discussions 

The summarized GLU levels analysis outcomes are displayed in Table 1. 

Based on Table 1, the most appropriate GLU levels Log-normal fitted 

mean and variance models are displayed in the above results section. These 

two GLU level models show the different complicated associations of 

GLU levels with heart disease related risk factors and along with the other 

physical, social and life-style factors. These different associations of GLU 

levels are discussed in the following paragraphs. It is derived herein that 

mean GLU levels is positively associated with the JIE of age and STR i.e., 

AGE*STR (P=0.0432), while both the marginal effects AGE (P=0.0004) 

and STR (P=0.0942) are negatively associated with the mean GLU levels. 

This indicates that if GLU levels increase as the joint effect of AGE*STR 

also increases. In other words, it implies that for higher GLU levels 

subjects have greater brain stroke effects at older ages. It is noted that if 

the joint effect is significant, the marginal effects are unimportant.  

Therefore, the role of marginal effects is not discussed when the joint effect 

is significant. Mean GLU levels is negatively associated with the JIE of 

SMO (never smoke=1; former=1; smoker=2) and HYP (no 

hypertension=0, hypertension=1) i.e., SMO*HYP (P=0.0206), while both 
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the marginal effects SMO (P=0.2132) and HYP (P=0.1681) are 

insignificant. This implies that GLU levels increase when the joint effect 

of smoking and hypertension (i.e. SMO*HYP) decreases. It shows that 

subjects with lower effect of   SMO*HYP may have higher GLU levels. 

Mean GLU levels is negatively associated with the JIE of MAR (no 

married=0; married=1), and subject’s HRT (no heart disease= 0, heart 

disease =1) status i.e. MAR*HRT (P<0.0001), while it is negatively 

associated with the marginal effect MAR (P=0.0002), and it is positively 

associated with the marginal effect HRT (P<0.0001). This implies that 

GLU levels increase when the joint effect of ever married and heart disease 

status (i.e. MAR*HRT) decreases. This indicates that subjects with no 

marriage and no heart disease may have higher GLU levels. Mean GLU 

levels is positively associated with the JIE of HYP (no hypertension=0, 

hypertension=1) and subject’s residence type (RES) (rural=0; urban=1) 

i.e., HYP*RES (P=0.0261), while it is negatively associated with the 

marginal effect RES (P=0.0295), but it is insignificant of HYP (P=0.1681).  

This shows that GLU levels increase as the joint effect of HYP*RES 

increases. It indicates that subjects residing in urban areas with 

hypertension may have higher GLU levels.  This is observed in practice 

[7,13]. Note that the above four paragraphs focus the effects of GLU levels 

with different heart disease related parameters. The associations between 

the mean GLU levels and physical, lifestyle & social parameters are given 

in the following lines. Mean GLU levels is positively associated with the 

JIE of age and BMI i.e., AGE*BMI (P=0.0032), while it is negatively 

associated with both AGE (P=0.0004) and BMI (P=0.0.0090). It indicates 

that GLU levels increase as the joint effect AGE*BMI increases. It implies 

that older subjects with higher BMI levels may have higher GLU levels, 

which are observed in practice. Mean GLU levels is negatively associated 

with the JIE of sex (male=0; female=1) and SMO (never smoke=1; 

former=1; smoker=2) i.e., SEX*SMO (P=0.0078), while it is insignificant 

of both the SEX (P=0.7704) and SMO (P=0.2132). This shows that GLU 

levels increase as the joint effect SEX*SMO decreases. It implies that male 

subjects with no smoking may have higher GLU levels. This is a strange 

finding. It may be verified in similar data sets in the future research. This 

is not reported in any earlier articles. Mean GLU levels is positively 

associated with the JIE of AGE and MAR i.e., AGE*MAR (P<0.0001), 

while it is negatively associated with both the marginal effects AGE 

(P=0.0004) and MAR (P=0.0002). It indicates that mean GLU levels 

increase as the joint effect AGE*MAR increases. It implies that older 

married subjects may have higher GLU levels, which are observed in 

practice. Also mean GLU levels is positively associated with the JIE of 

BMI and MAR i.e., BMI*MAR (P=0.0037), while it is negatively 

associated both of BMI (P=0.0090) and MAR (P=0.0002). It implies that 

mean GLU levels increase as the joint effect of BMI*MAR increases. This 

indicates that married subjects with higher BMI levels may have higher 

GLU levels, which are commonly observed in the real society. Mean GLU 

levels is positively associated with the JIE of SMO and RES i.e., 

SMO*RES (P=0.0427), while it is negatively associated with RES 

(P=0.0295) and indifferent of SMO (P=0.2132). It implies that GLU levels 

increase as the joint effect SMO*RES increases. This indicates that smoker 

subjects residing in urban areas may have higher GLU levels. The 

associations between the GLU levels’ variance and heart disease related 

parameters are illustrated in the following lines. Variance of GLU levels is 

positively associated with HRT (P=0.0327). It implies that GLU level 

values are highly scattered of the subjects with higher HRT. In addition, 

GLU levels’ variance is   negatively associated with the JIE of HYP and 

MAR i.e., HYP*MAR (P=0.0001), while it is positively associated with 

the marginal effect HYP (P<0.0001) and negatively associated with MAR 

(P=0.0022). This indicates that GLU level values are highly scattered of 

the subjects with lower joint effect HYP*MAR. Also, variance of GLU 

levels is positively associated with the JIE of MAR and STR i.e., 

MAR*STR (P=0.0327), while it is negatively associated with both the 

marginal effects of MAR (P=0.0022) and STR (P=0.0123). It implies that 

GLU level values are highly scattered of the subjects with higher joint 

effects of MAR*STR. There are a few more significant effects in the 

variance models, which are stated in the results section. These are not 

discussed herein as the information may not be used in medical sciences. 

Yet, the variance model has its own interpretations, which are important 

for dispersion of the response variable. Note that based on the variance 

model, the dispersion values of the response variable GLU levels of the 

subjects can be interpreted, which are associated with heart disease related 

risk factors, physical, lifestyle and social parameters.  These can be 

interpreted similarly as above. In medical sciences, mean model 

interpretations are important for understanding the effects of the response 

variable. Many important outcomes have been pointed out in the above. It 

is derived that higher GLU levels have a greater risk of brain stroke at older 

ages, which are observed in practice. Marginal effect of smoking (SMO) 

(P=0.2132) is insignificant with the response GLU levels, while it has 

many joint effects such as (with hypertension (HYP)) SMO*HYP 

(P=0.0206), (with sex) SEX*SMO (P=0.0078), (with residence type) 

SMO*RES (P=0.0427) with the GLU levels. These joint effects are 

discussed in the above. It is noted that some joint effects (SMO*HYP and 

SEX*SMO) have negative association with the GLU levels, while 

SMO*RES has positive association with the GLU levels. It indicates that 

SMO*HYP and SEX*SMO may be treated as the protective effects, while 

SMO*RES may be viewed as a risk factor for GLU levels. So, it is better 

to avoid smoking. In addition, the marginal association of BMI (P=0.0090) 

is negative with the GLU levels, while its joint effects AGE*BMI 

(P=0.0032) and BMI*MAR (P=0.0037) are positively associated with the 

GLU levels, which are treated as the risk factors for it. So, the subject's 

BMI is very important for the brain stroke problem. In the above, the report 

has focused on many more factors and the joint effects which are related 

with the GLU levels.   

5. Conclusions 

The current article has derived the effects of GLU levels on the brain stroke 

patients along with the heart disease related factors, other physical, social 

and lifetime factors. The fitted GLU levels probabilistic model has been 

selected herein based on the smallest AIC rule, on comparison of joint Log-

normal and Gamma models, standard error of the estimates and graphical 

diagnostic checking plots (Figure 1). Table 1 shows both the Log-normal 

and Gamma fitted models with similar interpretations. The interpretations 

about the effects of GLU levels on the brain stroke patients have been 

discussed above based on the fitted Log-normal model. Most of the derived 

findings herein focus on the real facts that are observed in practice. The 

obtained findings regarding GLU levels effects on the brain stroke patients 

herein though not completely eventual but are expressive. Modern 

scientific research methods should have complete faith on these obtained 

findings as the fitted models have been selected with graphical diagnostic 

checking and comparison of two different models.         

  

The fitted GLU levels models (Table 1) are derived from the data set as 

reported in the material section. For any similar data sets of GLU levels on 

the brain stroke patients, the findings will be almost similar to the present 

findings, which are not verified herein as similar data sets are not available. 

The current outcomes reveal many real facts, which are rarely reported in 

the earlier articles. Most of the findings in the report are completely new 

in the brain stroke literature. In addition, the report may help all the people, 

brain stroke patients, medical practitioners and researchers. It is concluded 

that GLU levels have very complex functional roles (Table 1) on the brain 

stroke patients that should be known to the practitioners for appropriate 
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treatment processes. For all common people, the report informs about the 

controlling of GLU levels, BMI and smoking at older ages. 

Abbreviations 

AIC Akaike information criterion 

BMI Body mass index 

 GLU Average blood glucose  

HYP Hypertension 

HRT Heart disease 

JIE Joint interaction effect  

JGLMs Joint generalized linear models 

MAR Ever married 

RES Residence type 

SMO Smoking 

STR Brain stroke 

TIA Transient ischemic attack  
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