ClinicSearch Clinics in Nursing

Gurkirtan Singh *

Research Article

Sex Adaptive Deep Recurrent Neural Networks for Parkinson’s
Disease Detection using 5-second Vertical Ground Reaction Force
Signals

Gurkirtan Singh '*, Anilendu Pramanik 2
"Department of Computational Statistics and Data Analytics, Guru Nanak Dev University, Amritsar, Punjab, India.
MY AS-GNDU Department of Sports Sciences and Medicine, Guru Nanak Dev University, Amritsar, Punjab, India.

*Correspondence Author: Gurkirtan Singh, Department of Computational Statistics and Data Analytics, Guru Nanak Dev University,
Amritsar, Punjab, India.

Received Date: January 09, 2026 | Accepted Date: January 16, 2026 | Published Date: January 23, 2026

Citation: Gurkirtan Singh, Anilendu Pramanik, (2026), Sex Adaptive Deep Recurrent Neural Networks for Parkinson’s Disease Detection
using 5-second Vertical Ground Reaction Force Signals, Clinics in Nursing, 5(1); DOI:10.31579/2835-8147/094.

Copyright: © 2026, Gurkirtan Singh. This is an open-access article distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract:

Background:

This study introduces an innovative sex-stratified methodology for the identification of Parkinson's disease
(PD) using vertical ground reaction force (VGRF) data obtained from foot sensors during ambulation. We
devised and evaluated four distinct recurrent neural network designs.

Objectives:

We identified a substantial deficiency in existing diagnostic methodologies that infrequently utilize sex-
stratified techniques by creating distinct models for male and female individuals over the age of 50 years and
architectural benchmarking for variants of recurrent neural networks in processing vertical ground reaction
force signals.

Methodology:

We trained Long Short-Term Memory (LSTM), bidirectional LSTM (bi- LSTM), Gated Recurrent Unit
(GRU), and bidirectional GRU (bi-GRU) on brief 5 s intervals of vertical ground reaction force (VGRF) data.
Results:

Our results indicate that the GRU models, which use fewer resources, perform very well, achieving high
accuracy (98.5% for males and 99.46% for females), recall (98.91% for males and 100% for females), and

F1 scores (98.78% for males and 99.48% for females), compared to the more complex LSTM models. The
bidirectional models demonstrated similar performance but necessitated increased processing resources.
Conclusion:

The efficacy of these sex-specific models with abbreviated time frames underscores the possibility of more
tailored, efficient, and accessible Parkinson's disease screening instruments that could facilitate earlier
intervention and treatment. Our discovery signifies a significant step in streamlining the diagnostic procedure
for Parkinson's disease patients non-invasively while also establishing a basis for the future development of
real-time diagnostic in clinical devices.

Keywords: deep learning; parkinson’s disease; VGRF; sex-based diagnosis; LSTM; GRU; bidirectional;
bidirectional gru
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Introduction

Parkinson’s disease (PD) is a progressive neurological condition affecting
approximately 10 million people worldwide. It is characterized by motor
symptoms including bradykinesia, rigidity, and gait abnormalities, as
noted by the Parkinson’s Foundation [1]. The degeneration of
dopaminergic neurons in the substantia nigra is a diagnostic indicator of
Parkinson's (Poewe et al. [2]). Research indicates that men experience
Parkinson's disease 1.5 times more frequently than women (Navita et al.
[3]). Early identification is difficult because initial symptoms, especially
gait patterns, may resemble age-related changes (Yin et al. [4],
Veeraragavan et al. [5]). Vertical ground reaction force (VGRF) signals,
obtained via wearable sensors during ambulation, have become a pivotal
biomarker for Parkinson's disease detection, providing non-invasive
measurement of gait dynamics, including stride variability, weight
distribution asymmetry, and temporal force patterns (Veeraragavan et al.
[5], Khoury et al. [6]). Conventional Parkinson's diagnosis techniques
depend significantly on subjective clinical evaluations, which are prone
to inter-rater variability and exhibit poor sensitivity to early- stage
symptoms (Yin et al. [4], Veeraragavan et al. [5]). Machine learning
methodologies utilizing VGRF data mitigate these constraints by
extracting objective spatiotemporal features, such as heel-strike impulse
asymmetry and mid-stance force modulation, which are substantially
correlated with dopaminergic degeneration (Veeraragavan et al. [5],
Khoury et al. [6]). Recent research indicates classification accuracies of
over 97% when employing artificial neural networks on VGRF datasets,
underscoring its diagnostic potential (Veeraragavan et al. [5]). Recurrent
Neural Networks (RNNs) are excellent for analyzing VGRF time-series
data because of their ability to represent temporal correlations in gait
cycles. Long Short-Term Memory (LSTM) and Gated Recurrent Unit
(GRU) architectures, along with their bidirectional variants (bi-LSTM/bi-
GRU), excel at capturing forward and backward contextual relationships
in sequential force patterns (Mir et al. [7], Skaramagkas et al. [8]). For
instance, a study conducted by Skaramagkas et al. [8] showed
bidirectional LSTM models with attention mechanisms achieving 98%
accuracy in detecting subtle PD-related tremors from sensor data,
outperforming conventional ML methods. Sex-specific modeling is
essential in PD identification, as it might uncover distinct gait adaptations
between males and females. Contemporary techniques for PD detection
rarely employ sex-stratified methodologies, which may diminish the
sensitivity in diverse populations. This research identifies three critical
deficiencies: Sex-adaptive modeling: building separate LSTM, bi-LSTM,
GRU, and bi-GRU architectures for male and female cohorts to account
for biomechanical differences in VGRF patterns. Modeling for a shorter
time window of 5 s to capture more meaningful temporal characteristics
may further improve the accuracy of sex-specific modeling. Architecture
benchmarking: systematic comparison of RNN variant performances in
capturing PD-specific temporal gait features. By evaluating these
architectures on sex-stratified VGRF data, this study aimed to optimize
model selection for real-world PD screening applications, enabling earlier
intervention and personalized therapeutic strategies.

Literature Review

Researchers have widely employed ML and deep learning (DL)
methodologies for the identification of Parkinson's disease (PD), utilizing
multiple qualitative and quantitative characteristics, resulting in
numerous publications. Accelerated technical progress in sensor- based
devices within the healthcare sector has enabled more precise assessment
of diverse motor and non-motor disorders. We identified foot sensors that
measure VGRF signals as the most resource-efficient sensors for
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analyzing gait patterns. We thoroughly reviewed studies that used
machine learning and deep learning techniques on VGRF sensor data and
other sensors to better understand the information related to our goals.
Khera et al. [9] developed a model for the classification and severity
assessment of Parkinson's specific to age and sex. They utilized multiple
ML approaches, including k-nearest neighbors (k-NN), support vector
machines (SVM), decision trees (DT), and random forests, and employed
a recursive feature selection method to develop and execute the model on
the gait dataset using a 10-fold cross-validation strategy. The SVM
emerged as the most effective classifier, achieving an accuracy of 98.5%
in the classification of PD, surpassing another generalized model, but
demonstrating a lower accuracy of 94.02% in the severity evaluation of
PD. Time-domain characteristics were recovered from the sensor readings
by gait cycle segmentation, and the VGRF data were partitioned into
individual strides for feature extraction. This approach complicates the
development of real-time PD diagnosis using VGRF sensors because a
robust data preprocessing pipeline must be established prior to the
extraction of all time-domain variables, rendering their model challenging
to implement in real-time clinical settings. Recurrent neural networks
obviate the necessity for distinct feature extraction and frequently surpass
standard ML models, such as SVM, in the acquisition of temporal
information. In a recent study, Navita et al. [3] developed a complex ML
model using a two-step classification approach. Step 1 had a hyper-tuned
random forest tree (RFT) to categorize participants into PD and non-PD
categories, and the following, step 2, a hyper-tuned ensemble regressor
(ER) model to predict illness severity utilizing the VGRF dataset from
Physionet [10]. They employed the synthetic minority over-sampling
technique (SMOTE) to generate synthetic data to balance the minority
class samples. They utilized a recursive feature elimination technique to
identify the ideal feature set for enhancing model performance [3]. Using
the RFT model, they achieved impressive results in differentiating
Parkinson’s disease (PD) patients from non-PD individuals, reporting an
accuracy of 97.5% =+ 2.1%, a sensitivity of 97% =+ 2.5%, and an average
specificity of 95% + 2.2%?2. In the second phase, the model was employed
to evaluate disease severity, yielding an average accuracy of 96.4% +
2.3% with loss reported as 0.065 + 0.024 (mean absolute error) and 0.080
+0.06 (root mean square error) [3]. SMOTE employs the K-NN algorithm
with Euclidean distance to produce synthetic samples from the minority
class training samples; however, it neglects the time-series characteristics
of VGRF signals [11] and may struggle to distinguish between stance and
swing phases, which exhibit extreme VGRF values. Consequently, the
generated samples may not accurately represent the readings obtained
from both cohorts. However, if they had incorporated sex stratification
into their model, it might have yielded superior outcomes. Mir et al. [12]
proposed an innovative LSTM methodology for detecting freezing of gait,
utilizing the VGRF dataset from Physionet [10] to develop a classification
model. The model achieved an accuracy of 97.71%, a sensitivity of 99%,
a precision of 98%, and a specificity of 96%. They employed the Rectified
Linear Unit (ReLU) activation function rather than adhering to the
standard LSTM architecture, which is designed to address vanishing and
exploding gradient issues. Furthermore, employing ReLU as the
activation function renders model training computationally expensive.
The parameters of the participants' age were not taken into account, which
included three younger cohorts aged 36, 37, and 45 years, while the
remaining data comprised elderly subjects aged 50 years or older. They
did not explore alternative types of recurrent neural networks, such as
Gated Recurrent Units, which provide performance similar to that of
LSTMs and, in certain instances, superior performance while being less
computationally intensive. Khoury et al. [6] suggested an ML-based
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method to differentiate between patients with PD and healthy individuals
using VGRF sensor data obtained from Physionet [10]. They conducted
experiments with multiple supervised ML models, including Naive Bayes
(NB), K-NN, DT, SVM, RFT, and Gaussian Mixture Models (GMM), as
well as unsupervised ML categorization using K-means. The performance
criteria employed for the assessment of generated models included
accuracy, recall, F1 score, and precision, utilizing the Leave-One-Out
Cross-Validation (LOOCV) method. Their suggested methodology was
helpful in distinguishing between PD and HC, achieving a suboptimal
accuracy rate of 90% utilizing K-NN. The accuracy might have been
enhanced by employing deep learning methodologies such as recurrent
neural networks and their derivatives. Setiawan et al. [13] suggested a
paradigm for the detection and assessment of the severity of PD. The
model was developed by emphasizing time-frequency-domain features,
which were altered through Continuous Wavelet Transformation (CWT)
to produce a spectrogram for enhanced visualization. Principal
Component Analysis (PCA) was employed to augment model accuracy
by identifying significant components from the extracted feature set. The
VGRF dataset was utilized to construct DL models, supplemented by 10-
fold cross-validation to enhance generalizability. Separate models were
constructed for each contributing dataset within the VGRF dataset, and
the datasets were also amalgamated to develop more generalized models.
The datasets underwent pre-processing to incorporate signal windows of
10s, 15s, and 30s duration. The classification was conducted in two
manners: binary classification distinguishing between PD and healthy
subjects, and multiclass classification based on Hoehn & Yahr severity
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ratings, categorizing into PD Stage 2, PD Stage 2.5, PD Stage 3, and
healthy subjects, resulting in four distinct groups. The optimal outcome
for the classification of the merged dataset was attained with the Res Net
Convolutional Neural Network, which achieved a modest accuracy of
94.58%. They did not use a hybrid model, which may have enhanced their
prediction accuracy scores. They did not test a reduced window size of 5
s and stratified the VGRF dataset by sex, which may have enhanced their
results. The proposed model incorporates additional complications in data
transformations, which complicates its usability and hinders its scalability
in real-time diagnosis. Joshi et al. [14] proposed an “automatic non-
invasive method for Parkinson’s disease classification” that was able to
differentiate between Parkinson's gait and healthy subject gait by blending
wavelet analysis with an SVM model. A low accuracy score of 90.32 %
was obtained by considering only one gait parameter while considering
specific gait variables, whereas the db2 wavelet underperformed the Haar
wavelet decomposition [14]. The dataset had only 31 subjects, including
16 healthy and 15 PD subjects, rendering the model’s performance
inappropriate for a larger population.

Methodology

The suggested technique includes dataset description, exploratory data
analysis, data preparation, proposed models, model building, and
evaluation metrics. We executed all phases of the suggested methodology
utilizing the "Google Colab" Jupyter Notebook with Python version
3.11.11. The recommended methodology for the model-building process
is illustrated in Error! Reference source not found.
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Methodology Flowchart
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Dataset Description

The dataset utilized for the implementation of the proposed models was
obtained from Physionet [10]. A secondary dataset was obtained for
model development, which could be augmented using newly collected
smart sensor data. The dataset was compiled from gait recordings
obtained from the Movement Disorders Unit, Laboratory for Gait and
Neurodynamics, Tel-Aviv Sourasky Medical Center. It was named in
recognition of the researchers who contributed to its collection: Frenkel-
Toledo et al. [15] (labeled as ‘Si’), Hausdorff et al. [16] (labeled as ‘Ju’),
and Yogev et
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al. [17] (labeled as ‘Ga’). This dataset consists of gait signals collected
from 166 individuals, including 93 diagnosed with PD and 73 categorized
as healthy controls. We obtained a dataset containing demographic
information for exploratory data analysis and cleansing. Figure 2, adapted
from the study by Alam et al. [18], shows the layout of the sensor
placements when a subject is standing in a relaxed position with their feet
parallel. The approximate (X, Y) coordinates are provided relative to a
coordinate system centered between the legs, with the person facing in the
direction of the positive Y-axis.
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***Figure 2%%*
Exploratory Data Analysis

The demographic data indicate the number of subjects from each study
categorized by sex, as illustrated in Figure 3. The Hoehn and Yahr score
for PD subjects was “2” for 55 subjects, “2.5” for 10 subjects, and 3 for
18 subjects. This range signifies progression from early-stage Parkinson's
(stages 1 and 2) to middle-stage disease, characterized by a more
pronounced impact on daily functioning due to the onset of bilateral motor
involvement, although independence is still preserved (Hoehn et al. [19]).
The age distribution of the subjects, as illustrated by the boxplot in Figure
4, indicated significant outlier values. The dataset comprised sensor
readings from both subject groups organized as separate text files with the
attributes outlined in Table 1. Additionally, looking at the readings from
each study showed significant differences in how long data was collected,
as shown in Figure 5. Analysis of the "Total Force Under Left Foot" and
"Total Force Under Right Foot" from the 10-second to 15- second interval
of'a randomly selected subject from each study group revealed significant
fluctuations in peak force achievements over time, as also emphasized by
the research conducted by Navita et al. [3] Figure 6 illustrates the related
graphs.
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Exploratory Data Analysis

The demographic data indicate the number of subjects from each study
categorized by sex, as illustrated in Figure 3. The Hoehn and Yahr score
for PD subjects was “2” for 55 subjects, “2.5” for 10 subjects, and 3 for
18 subjects. This range signifies progression from early-stage Parkinson's
(stages 1 and 2) to middle-stage disease, characterized by a more
pronounced impact on daily functioning due to the onset of bilateral motor
involvement, although independence is still preserved (Hoehn et al. [19]).
The age distribution of the subjects, as illustrated by the boxplot in Figure
4, indicated significant outlier values. The dataset comprised sensor
readings from both subject groups organized as separate text files with the
attributes outlined in Table 1. Additionally, looking at the readings from
each study showed significant differences in how long data was collected,
as shown in Figure 5. Analysis of the "Total Force Under Left Foot" and
"Total Force Under Right Foot" from the 10-second to 15-second interval
of a randomly selected subject from each study group revealed significant
fluctuations in peak force achievements over time, as also emphasized by
the research conducted by Navita et al. [3] Figure 6 illustrates the related
graphs.

IAttribute 1%

Time (in centiseconds)

Attributes 2"-9™ (Left Foot)

IVGRF (in Newton) measurements for each of eight sensors.

Attributes 10%-17% (Right Foot)

IVGRF measurements for each of the eight sensors.

Attribute 18t

Aggregated force under the left foot

IAttribute 19™

IAggregated force under the right foot.

Table 1: Description of attributes in the utilized dataset. (Source: Yogeyv et al. [17])
Count of Subjects in each study by Sex
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Data Preprocessing Demographic information was used to stratify the data according to sex.

This methodology was selected because recent studies have shown that
VGRF-based gait analysis can effectively distinguish between
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Parkinson's disease patients and healthy controls with considerable
accuracy (Navita et al. [3]); however, the particular influences of age and
sex stratification on diagnostic efficacy using this technique are still
inadequately investigated. Research by Haaxma et al. [20] reveals that
females exhibit the onset of Parkinson's disease symptoms approximately
2.1 years later than males, with average onsets occurring at 53.4 years for
females and 51.3 years for males. The preprocessing pipeline integrates
domain-specific factors to improve clinical relevance and model
generalizability. Individuals under 50 years of age (n = 3) were excluded
to conform to the study's emphasis on older populations exceeding 50
years, as PD gait patterns in younger groups may indicate atypical
etiologies. The variables "total force under left foot" and "total force under
right foot" were eliminated because they were derived from the
summation of the sensor readings for each foot individually. This removal
also facilitated a direct pipeline for transmitting the VGRF values from
each of the sixteen sensors to the model for efficient real-time prediction.
The variable identifying the time in centi-second was also removed.
Although existing research emphasizes longer durations of 10 s and initial
trims of 20 s (Navita et al. [3]), we implemented a 5 s window with a 10
s gait initiation trim, achieving a balance between temporal resolution and
sample size sufficiency while reducing early stride variability. To
standardize walking conditions, only the initial trial of each subject's
single-task walking was retained, omitting dual-task trials that introduced
confounding cognitive loads [21]. This targeted preprocessing adheres to
established protocols for isolating PD-specific gait impairments during
controlled clinical observation. These modifications highlight the
essential importance of task-specific data curation in deep learning
applications, where improper segmentation or the inclusion of diverse
tasks can artificially enhance training performance at the expense of real-
world validity.
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Proposed Models

LSTM Network

A Long Short-Term Memory (LSTM) network mitigates the vanishing
and exploding gradient issues inherent in traditional Recurrent Neural
Networks (RNN) by utilizing memory cells and gated mechanisms (input,
forget, and output gates) to preserve essential temporal dependencies, as
introduced by Hochreiter et al., [22]. As the name suggests, the forget gate
determines which elements of information from the preceding cell state
should be retained and which should be removed. This is accomplished
by employing a sigmoid activation function on the concatenation of the
preceding hidden state and the current input, producing values ranging
from 0 to 1, which acts as a filter for the prior cell state. After determining
what to forget, the input gate reviews the present input and produces new
candidate values for potential inclusion in the cell state. Sigmoid
activation identifies the elements that should be updated, whereas a
separate layer constructs a vector of potential values to be incorporated.
The next step involves updating the cell state by merging the preserved
information from the previous state filtered through the forget gate with
the newly generated candidate values scaled by the input gate. The output
gate utilizes the revised cell state to determine the information to be
transmitted as a hidden state, which is subsequently employed in further
computations and layers. This mechanism allows the LSTM network to
balance the retention of long-term memory with the integration of new
inputs, rendering it particularly effective for tasks such as distinguishing
between PD and healthy individuals. Equations 1 through 6 in Table 2
elucidate the processes occurring within an LSTM cell, as illustrated in
Figure 7.

Memory cell /7~
;)  internal state (@) C
C., b 4
Forget Input
| Input + utput
gz::te ‘ gzlne node gate
: am |EE I'mhl "Ial i
Hidden state 1
0 ) —o H,
-
Input X,
FC layer with Elementwise
I, activation function operator _L. Copy | Concatenate’

Bidirectional LSTM Network

Bidirectional LSTM networks, initially presented by Graves et al. [23],
augment unidirectional LSTM networks by incorporating a parallel
LSTM layer capable of capturing temporal patterns and dependencies in
the reverse direction. They can process input sequences in both forward

and backward directions, rendering them an effective model for signal
processing and modeling, where capturing context from both the past and
the future is crucial. They require increased training duration and
computational resources relative to the LSTM model. Figure 8 illustrates
its operation.! " "# $ %& %o# #' |(& Yot )" * "*
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Gated Recurrent Unit Network

Gated Recurrent Unit (GRU) networks were introduced by Cho et al. [24]
and are specifically engineered to manage sequential data by
comprehending and retaining intricate patterns. Their components include
gates and memory units that enable the GRU network to understand
relationships across various time intervals, providing improved
computational efficiency relative to traditional LSTM networks. It
comprises two gates: a reset gate and an update gate. The reset gate
ascertains the extent to which the prior hidden state should be disregarded,
whereas the update gate evaluates the degree to which the current input
should be utilized to update the hidden state. Both gates are associated
with the hidden state. They differ from LSTMs by merging the forget and

input gates into a singular "update gate," which facilitates the precise
regulation of information flow to effectively manage essential data within
sequences. The GRU network lacks an output gate and utilizes a more
concise set of parameters than the LSTM network. Yang et al. [25]
examined the dual aspects of performance and computational cost,
revealing that the performance-cost ratio of GRU surpassed that of
LSTM. Figure 9 illustrates the architecture of a GRU cell, and the

accompanying equations elucidate the computations occurring within it.
+,# " - n . / R OH*" - GG. 0 s
#Hp " H# * " tanh 0,

YSHE L 17/

Hidden state (

\

= O—O—n
O~@
(@ Reset Update
gate gate Candidate
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Bidirectional GRU network

operator

Bidirectional Gated Recurrent Unit (bi-GRU) networks enhance the
functionality of unidirectional GRU architectures by integrating two

Elementwise

z Copy T’ Concatenate

parallel GRU layers: one that processes input sequences in the forward
temporal direction and another that processes them in reverse. This dual
processing allows the model to capture contextual dependencies from
both prior and subsequent elements of sequential data, such as VGRF
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signals in the Parkinsonian gait analysis. In contrast to unidirectional
models, the bidirectional architecture of bi-GRU is particularly proficient
in situations that require a comprehensive temporal context, such as
detecting stride irregularities or gait initiation anomalies. Despite being
computationally more demanding than conventional GRUs owing to the
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increased parameterization, the superior feature extraction capabilities of
bi-GRUs validate their application in clinical motion analytics. Figure 10
provides a visual representation that resembles the structure of the
bidirectional LSTM network.

Model Development

The suggested DL architecture for detecting PD using gait-based VGRF
sensor data maintains a uniform structural framework across all four

models, differing solely in the selection of optimal hyperparameters, as
illustrated in Figure 11.

Input Layer with shape as (500, 16, batch size)

N4

Recurrent Layer | (LSTM/bi-LSTM/GRU/bi-GRU)

v

Dropout Layer
v
Recurrent Layer 2
Loss
binary_crossentropy Dense Layer
v
Optimizer = Adam -
Prediction
Evaluation metrics
v v
{Accuracy, Recall, Parkinson Healthy

Precision, Specificity,

F1 score, ROC curve}

L2 regularization

L2 regularization is a commonly employed method in deep learning to
mitigate the effects of overfitting and produce enhanced model
generalization. This is achieved by incorporating a penalty term into the
original loss function. This penalty deters excessive weight values,
thereby streamlining the model and reducing its susceptibility to noise in

training data. Mir et al. [7] also illustrated the efficacy of this
regularization method in their model development. An identical
methodology was selected for model training based on their work. The
mathematical expression is as follows: 313 8 ** & 8 ** §:1) & ; <&
The "loss_ function" refers to the binary cross-entropy loss, "w" denotes
the model weights acquired during an iteration, "wi" signifies individual
coefficients, and "A" (lambda or alpha) is the regularisation parameter that
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regulates the intensity of the penalty. An elevated lambda value leads to
enhanced regularization, promoting reduced non-zero coefficients and
preventing any individual feature from dominating the model's
predictions.

Adam Optimizer

An optimization technique extensively employed in training deep neural
networks, yielding faster convergence rates than traditional optimization
algorithms, was introduced by Kingma et al. [26] by integrating the
characteristics of RMSprop and momentum-based gradient descent
methods. Mir et al. [7] utilized it in their model development to attain
remarkable convergence speed and predictive accuracy regarding the
freezing of gait. Rehman et al. [27] also demonstrated its efficacy in
training deep neural networks for the detection of Parkinson's disease. Its
capacity to adjust to the calculated gradients of the loss function
iteratively modify learning rates renders it resilient to noisy gradients
while simultaneously ensuring efficient memory usage and expedited
convergence through hyperparameter selection.

Dropout Layer

A regularization technique for deep neural networks, introduced by
Srivastava et al., that alters intermediate neural connections by randomly
deactivating incoming neurons and their connections with a probability of
p- This strategy prevents hidden units from becoming overly reliant on
one another (co-adaptation), promoting stronger and more generalized
learning while mitigating overfitting. Mir et al. [7], Rehman et al. [27],
and additional studies employing DL models extensively utilize this
technique to enhance model robustness and generalizability. We
established the value p for each model through hyperband hyperparameter
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Early Stopping

A distinct regularization technique that halts the training process upon
detecting overfitting by assessing the model's performance on the
validation set throughout the training phase. In 1998, Prechelt [28]
emphasized its effectiveness, a period of time when computational
resources of time and space were constrained. Currently, it enhances the
training process by halting it based on performance metrics, specifically
"val_ accuracy," and the "patience" parameter, which determines the
number of epochs to wait before assessing whether learning has improved
or declined. It also enabled us to recover the optimal weights acquired
when the model attained peak performance during training. This led to
employing a reduced number of epochs during the training phase
compared to the initially defined range based on the study by Mir et al.

(7]
Hyperparameter Tuning

Hyperparameters are model parameters not directly acquired during
training; instead, they are configuration variables that govern the model's
learning process. They are established prior to training and remain
unchanged throughout the training process. Hyperparameter tuning is
crucial for the network's learning of the underlying function within an
extensive hyperparameter search space. Hyperband hyperparameter
tuning reallocates resources dynamically based on intermediate
outcomes, rendering it exceptionally efficient for iterative algorithms
such as deep learning models, as demonstrated by Li et al. [29]. Our
proposed models employed a consistent methodology to guarantee the
efficient learning of optimal hyperparameter configurations for each
individual model, as presented in Table 3.

tuning.
Model Units in I* L2 Dropout rate | Unitsin 2" | Learning Rate Total epochs of
Recurrent regularization value Recurrent for Adam training with early
Layer Layer Optimizer stopping
ILSTM (Males) 256 0.0005 0.3 96 0.0005 80
Bi-LSTM (Males) 128 0.0001 0.1 64 0.0005 80
GRU (Males) 256 0.0005 0.1 64 0.001 80
Bi-GRU (Males) 256 0.0005 0.1 32 0.001 50
LSTM (Females) 256 0.005 0.1 64 0.0005 64
Bi-LSTM (Females) 256 0.0005 0.2 64 0.001 30
GRU (Females) 256 0.005 0.2 128 0.001 27
Bi-GRU (Females) 256 0.0005 0.2 32 0.005 43

Table 3: Modeling Hyperparameters for Males and Females.

Evaluation Metrics

Confusion matrices were created to assess the performance of the
developed models. Performance metrics such as accuracy, recall,
precision, and F1 scores were computed. This aligns with research
conducted by scholars such as Navita et al. [3], Mir et al. [7], Rehman et
al. [27] Pham [30], Rashnu et al. [31], and others, wherein PD detection
was approached as classification issue. Accuracy as a performance metric
quantifies the ratio of correct predictions (true positives and true
negatives) for both classes relative to the total predictions made by the
model, thereby explaining the model's efficacy for each class [27]. The
percentage of true positives to all actual positives is measured by recall
[27], including false negatives, which involve misclassifying Parkinson's
disease patients as healthy, are crucial in clinical contexts, as undiagnosed
Parkinson's disease can postpone treatment and exacerbate outcomes. It
guarantees the detection of the majority of Parkinson's cases. Precision
quantifies the ratio of true positives predicted by the model to

the aggregate of both true positives and false positives. Misclassifying a
healthy individual as a Parkinson's patient may result in superfluous
expenditure of resources, including time and money, as well as induce
anxiety for the individual. Precision guarantees that the model reduces
such errors. F1 scores amalgamate the performance metrics of recall and
precision as their harmonic mean, thereby balancing both into a singular
metric. This is especially beneficial for imbalanced datasets such as PD
classification, where both false positives and false negatives carry
substantial repercussions. Another crucial evaluation tool is the Receiver
Operating Characteristic curve, abbreviated as ROC, which assesses and
helps strike an equilibrium between the true positive rate (sensitivity) and
the false positive rate across various thresholds of a binary classifier [27],
as per the tolerance criteria of misclassification. The measurement of the
total differentiation between classes is achieved by calculating the area
under the curve (AUC). ROC-AUC is robust against class imbalance and
provides insights into the model's efficacy in distinguishing between
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healthy individuals and those with Parkinson's disease. It is particularly =~ The aforementioned performance metrics are presented herein. Figures 12
beneficial for model comparison or the optimization of decision  to 15 present confusion matrices for the comparison of models developed

thresholds aligned with therapeutic aims. for males. Positive and negative class labels are denoted as “1”” and “0,”
respectively, with “1” indicating a PD subject and “0” indicating a health:
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Figure 16: Presents the individual performance metrics of the models.
Accuracy Precision Recall F1-Score
Model

LSTM  0.985000 0.991758 0.983651 0.987688
BiLSTM 0.983333  0.981132 0.991826 0.986450
GRU 0.985000 0.986413 0.989101 0.987755

BiGRU 0.985000 0.986413 0.989101 0.987755

The ROC-AUC plot of the models is presented in Figure 17.
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Receiver Operating Characteristic (ROC) Curves
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Since GRU models, whether unidirectional or bidirectional, demonstrate
comparable performance to LSTM-based models, their reduced
parameter requirements render them more efficient in training relative to
LSTM-based models. The findings indicate that these models are equally
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Individual performance metrics of models are highlighted in Figure 22.

proficient in identifying pertinent sequential patterns in the data for males
and may be favored over alternative models.

Female Subjects

The confusion matrices for each model are presented from Figure 18 to
21 for comparison.
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Model

LSTM

0.991914

0.994792

0.989637
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0.992208

> (
BiLSTM 0.994609 0.994819 0.994819 0.994819
GRU 0.994609 0.989744 1.000000 0.994845

. BiGRU 0.986523  0.984536 0.989637 0.987080

The ROC-AUC plot of the models is presented in Figure 23.

Receiver Operating Characteristic (ROC) Curves
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The unidirectional GRU model surpasses the LSTM, bi-LSTM, and its
bidirectional variant, bi-GRU, in accuracy, recall, and F1 score. Although
the other models yield comparable performance metrics, the GRU, being
the more lightweight model in terms of parameter count and efficient
training, effectively captures the pertinent sequential patterns in the data
for females with superior performance and may be favoured over the
alternative models.

Discussion

The development of sex-stratified recurrent neural network designs for
PD identification via VGRF data represents a significant advancement in
deep learning techniques for diagnosing neurological illnesses. Our
findings address critical deficiencies in the existing literature by
demonstrating that sex-specific modeling, integrated with shorter time
window analysis, yields highly effective diagnostic performance. Our
findings reveal notable differences in model performance between male
and female groups, supporting the biological hypothesis that PD
manifests differently across sexes. In male subjects, both unidirectional
and bidirectional GRU models achieved comparable accuracy (98.5%),
demonstrating outstanding recall (98.91%) and precision (98.64%)
metrics. In contrast, for female subjects, the unidirectional GRU
outperformed all other architectures, attaining an accuracy of 99.46%, a
recall of 100%, and an F1 score of 99.48%. The models' performance
aligns with the findings of Haaxma et al. [20], who identified sex- based
disparities in the onset and progression of PD. The sex-specific models
likely revealed distinct biomechanical adaptations to dopaminergic
degeneration that may have been masked in a combined model. This
observation has important clinical implications, suggesting that
diagnostic tools for PD should incorporate sex as a critical variable rather
than treating it solely as a demographic factor. The implementation of 5 s

time windows represents a methodological advancement over previous
studies that primarily utilized 10 s or longer time intervals. This reduces
the time required for data collection and has practical implications for
clinical implementation, as shorter assessment intervals are more feasible
in time-constrained clinical settings and less burdensome for patients with
mobility challenges. Despite the shorter duration, our models exhibited
superior performance relative to those reported in the literature that
employed longer windows, including the studies by Navita et al. [3]
(97.5% accuracy), Mir et al. [7] (97.71% accuracy), and Setiawan et al.
[13] (94.58% accuracy). This highlights the importance of using shorter
time intervals in the investigation of alternative biomarkers of PD, as this
approach may reveal hidden temporal dependencies that could be masked
in longer time frames. The comparative analysis of RNN variants revealed
that GRU-based consistently outperformed LSTM
counterparts across both sex cohorts while requiring fewer parameters.
For male subjects, the unidirectional and bidirectional GRU models
achieved the same accuracy (98.5%), F1 score (98.78%), and other
performance metrics. The unidirectional GRU significantly surpassed all

architectures

other architectures, including its bidirectional counterpart, for female
subjects. This performance pattern challenges the prevalent belief that
bidirectional architectures inherently produce better outcomes for time-
series classification tasks. The added complexity and computational
expense of bidirectional processing did not yield significant performance
enhancements, especially for female subjects. This finding suggests that
forward sequential patterns in VGRF data are sufficiently distinctive for
PD classification, whereas the reverse temporal context captured by
bidirectional models offers minimal diagnostic value. The improved
efficiency of GRU models is particularly relevant for potential use in
resource-constrained environments or mobile applications, where
computational efficiency directly affects accessibility. The comparable
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effectiveness of unidirectional GRUs to more complex architectures
suggests that simplified models may be adequate for efficient PD
screening, potentially enabling wider adoption of these technologies in
primary care settings. Despite the positive results, several limitations
require further investigation. The dataset used for model development
included subjects with moderate Parkinson's disease severity (Hoehn
46and Yahr scores of 2 to 3), potentially limiting the models' applicability
to earlier disease stages where subtle gait abnormalities may be less
apparent. Subsequent research should validate these methodologies on
populations with earlier stages of Parkinson's Disease to evaluate their
efficacy for preclinical detection. Secondly, although sex stratification
enhanced model efficacy, other demographic variables, including age-
specific cohorts, cultural differences in gait patterns, and comorbidities
influencing mobility, were not explicitly incorporated into the model.
Investigating these supplementary stratification dimensions may enhance
the personalization of PD detection algorithms. Ultimately, the existing
models that concentrate solely on VGRF data, when integrated with
additional biomarkers of PD, such as features derived from
accelerometers, voice analysis, or digital biomarkers from smart devices,
could establish more comprehensive detection systems. Future research
should explore multimodal approaches that combine
complementary data sources to improve diagnostic accuracy.

these

Conclusion

This study introduces a new methodology employing recurrent deep
neural networks to create sex-specific models for identifying PD, laying
the groundwork for the investigation of sex-specific diagnostic
approaches. These models effectively identify temporal dependencies in
VGREF signal data and exhibit notable classification performance when
analyzed over short 5 s intervals. The rigorous data preprocessing ensures
the exclusion of individuals under 50 years of age from the learning
process, facilitating a more precise representation of the signal data from
the older population. The implemented approach emphasizes the
architectural benchmarks to consider when training recurrent neural
networks for the utilization of VGRF signals in the diagnosis of PD. The
model demonstrates that stratification based on demographic factors of
sex and age can enhance the predictive accuracy for Parkinson's disease.
This methodology is applicable to other neurodegenerative disorders,
such as Alzheimer's disease, Huntington's disease, and various gait-
related conditions. The integration of supplementary biomarkers of
Parkinson’s disease using this method can significantly improve the
diagnostic process. This method simplifies the data transformation
processes used in many studies, making it a viable choice for real-time
clinical detection.
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