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Abstract: 

Background:  

This study introduces an innovative sex-stratified methodology for the identification of Parkinson's disease 

(PD) using vertical ground reaction force (VGRF) data obtained from foot sensors during ambulation. We 

devised and evaluated four distinct recurrent neural network designs. 

Objectives:  

We identified a substantial deficiency in existing diagnostic methodologies that infrequently utilize sex-

stratified techniques by creating distinct models for male and female individuals over the age of 50 years and 

architectural benchmarking for variants of recurrent neural networks in processing vertical ground reaction 

force signals. 

Methodology:  

We trained Long Short-Term Memory (LSTM), bidirectional LSTM (bi- LSTM), Gated Recurrent Unit 

(GRU), and bidirectional GRU (bi-GRU) on brief 5 s intervals of vertical ground reaction force (VGRF) data. 

Results: 

Our results indicate that the GRU models, which use fewer resources, perform very well, achieving high 

accuracy (98.5% for males and 99.46% for females), recall (98.91% for males and 100% for females), and 

F1 scores (98.78% for males and 99.48% for females), compared to the more complex LSTM models. The 

bidirectional models demonstrated similar performance but necessitated increased processing resources. 

Conclusion:  

The efficacy of these sex-specific models with abbreviated time frames underscores the possibility of more 

tailored, efficient, and accessible Parkinson's disease screening instruments that could facilitate earlier 

intervention and treatment. Our discovery signifies a significant step in streamlining the diagnostic procedure 

for Parkinson's disease patients non-invasively while also establishing a basis for the future development of 

real-time diagnostic in clinical devices. 

Keywords: deep learning; parkinson’s disease; VGRF; sex-based diagnosis; LSTM; GRU; bidirectional; 

bidirectional gru 
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Introduction 

Parkinson’s disease (PD) is a progressive neurological condition affecting 

approximately 10 million people worldwide. It is characterized by motor 

symptoms including bradykinesia, rigidity, and gait abnormalities, as 

noted by the Parkinson’s Foundation [1]. The degeneration of 

dopaminergic neurons in the substantia nigra is a diagnostic indicator of 

Parkinson's (Poewe et al. [2]). Research indicates that men experience 

Parkinson's disease 1.5 times more frequently than women (Navita et al. 

[3]). Early identification is difficult because initial symptoms, especially 

gait patterns, may resemble age-related changes (Yin et al. [4], 

Veeraragavan et al. [5]). Vertical ground reaction force (VGRF) signals, 

obtained via wearable sensors during ambulation, have become a pivotal 

biomarker for Parkinson's disease detection, providing non-invasive 

measurement of gait dynamics, including stride variability, weight 

distribution asymmetry, and temporal force patterns (Veeraragavan et al. 

[5], Khoury et al. [6]). Conventional Parkinson's diagnosis techniques 

depend significantly on subjective clinical evaluations, which are prone 

to inter-rater variability and exhibit poor sensitivity to early- stage 

symptoms (Yin et al. [4], Veeraragavan et al. [5]). Machine learning 

methodologies utilizing VGRF data mitigate these constraints by 

extracting objective spatiotemporal features, such as heel-strike impulse 

asymmetry and mid-stance force modulation, which are substantially 

correlated with dopaminergic degeneration (Veeraragavan et al. [5], 

Khoury et al. [6]). Recent research indicates classification accuracies of 

over 97% when employing artificial neural networks on VGRF datasets, 

underscoring its diagnostic potential (Veeraragavan et al. [5]). Recurrent 

Neural Networks (RNNs) are excellent for analyzing VGRF time-series 

data because of their ability to represent temporal correlations in gait 

cycles. Long Short-Term Memory (LSTM) and Gated Recurrent Unit 

(GRU) architectures, along with their bidirectional variants (bi-LSTM/bi-

GRU), excel at capturing forward and backward contextual relationships 

in sequential force patterns (Mir et al. [7], Skaramagkas et al. [8]). For 

instance, a study conducted by Skaramagkas et al. [8] showed 

bidirectional LSTM models with attention mechanisms achieving 98% 

accuracy in detecting subtle PD-related tremors from sensor data, 

outperforming conventional ML methods. Sex-specific modeling is 

essential in PD identification, as it might uncover distinct gait adaptations 

between males and females. Contemporary techniques for PD detection 

rarely employ sex-stratified methodologies, which may diminish the 

sensitivity in diverse populations. This research identifies three critical 

deficiencies: Sex-adaptive modeling: building separate LSTM, bi-LSTM, 

GRU, and bi-GRU architectures for male and female cohorts to account 

for biomechanical differences in VGRF patterns. Modeling for a shorter 

time window of 5 s to capture more meaningful temporal characteristics 

may further improve the accuracy of sex-specific modeling. Architecture 

benchmarking: systematic comparison of RNN variant performances in 

capturing PD-specific temporal gait features. By evaluating these 

architectures on sex-stratified VGRF data, this study aimed to optimize 

model selection for real-world PD screening applications, enabling earlier 

intervention and personalized therapeutic strategies. 

Literature Review 

Researchers have widely employed ML and deep learning (DL) 

methodologies for the identification of Parkinson's disease (PD), utilizing 

multiple qualitative and quantitative characteristics, resulting in 

numerous publications. Accelerated technical progress in sensor- based 

devices within the healthcare sector has enabled more precise assessment 

of diverse motor and non-motor disorders. We identified foot sensors that 

measure VGRF signals as the most resource-efficient sensors for 

analyzing gait patterns. We thoroughly reviewed studies that used 

machine learning and deep learning techniques on VGRF sensor data and 

other sensors to better understand the information related to our goals. 

Khera et al. [9] developed a model for the classification and severity 

assessment of Parkinson's specific to age and sex. They utilized multiple 

ML approaches, including k-nearest neighbors (k-NN), support vector 

machines (SVM), decision trees (DT), and random forests, and employed 

a recursive feature selection method to develop and execute the model on 

the gait dataset using a 10-fold cross-validation strategy. The SVM 

emerged as the most effective classifier, achieving an accuracy of 98.5% 

in the classification of PD, surpassing another generalized model, but 

demonstrating a lower accuracy of 94.02% in the severity evaluation of 

PD. Time-domain characteristics were recovered from the sensor readings 

by gait cycle segmentation, and the VGRF data were partitioned into 

individual strides for feature extraction. This approach complicates the 

development of real-time PD diagnosis using VGRF sensors because a 

robust data preprocessing pipeline must be established prior to the 

extraction of all time-domain variables, rendering their model challenging 

to implement in real-time clinical settings. Recurrent neural networks 

obviate the necessity for distinct feature extraction and frequently surpass 

standard ML models, such as SVM, in the acquisition of temporal 

information. In a recent study, Navita et al. [3] developed a complex ML 

model using a two-step classification approach. Step 1 had a hyper-tuned 

random forest tree (RFT) to categorize participants into PD and non-PD 

categories, and the following, step 2, a hyper-tuned ensemble regressor 

(ER) model to predict illness severity utilizing the VGRF dataset from 

Physionet [10]. They employed the synthetic minority over-sampling 

technique (SMOTE) to generate synthetic data to balance the minority 

class samples. They utilized a recursive feature elimination technique to 

identify the ideal feature set for enhancing model performance [3]. Using 

the RFT model, they achieved impressive results in differentiating 

Parkinson’s disease (PD) patients from non-PD individuals, reporting an 

accuracy of 97.5% ± 2.1%, a sensitivity of 97% ± 2.5%, and an average 

specificity of 95% ± 2.2%2. In the second phase, the model was employed 

to evaluate disease severity, yielding an average accuracy of 96.4% ± 

2.3% with loss reported as 0.065 ± 0.024 (mean absolute error) and 0.080 

± 0.06 (root mean square error) [3]. SMOTE employs the K-NN algorithm 

with Euclidean distance to produce synthetic samples from the minority 

class training samples; however, it neglects the time-series characteristics 

of VGRF signals [11] and may struggle to distinguish between stance and 

swing phases, which exhibit extreme VGRF values. Consequently, the 

generated samples may not accurately represent the readings obtained 

from both cohorts. However, if they had incorporated sex stratification 

into their model, it might have yielded superior outcomes. Mir et al. [12] 

proposed an innovative LSTM methodology for detecting freezing of gait, 

utilizing the VGRF dataset from Physionet [10] to develop a classification 

model. The model achieved an accuracy of 97.71%, a sensitivity of 99%, 

a precision of 98%, and a specificity of 96%. They employed the Rectified 

Linear Unit (ReLU) activation function rather than adhering to the 

standard LSTM architecture, which is designed to address vanishing and 

exploding gradient issues. Furthermore, employing ReLU as the 

activation function renders model training computationally expensive. 

The parameters of the participants' age were not taken into account, which 

included three younger cohorts aged 36, 37, and 45 years, while the 

remaining data comprised elderly subjects aged 50 years or older. They 

did not explore alternative types of recurrent neural networks, such as 

Gated Recurrent Units, which provide performance similar to that of 

LSTMs and, in certain instances, superior performance while being less 

computationally intensive. Khoury et al. [6] suggested an ML-based 



Clinics in Nursing                                                                                                                                                                                                                                  Page 3 of 16 

method to differentiate between patients with PD and healthy individuals 

using VGRF sensor data obtained from Physionet [10]. They conducted 

experiments with multiple supervised ML models, including Naive Bayes 

(NB), K-NN, DT, SVM, RFT, and Gaussian Mixture Models (GMM), as 

well as unsupervised ML categorization using K-means. The performance 

criteria employed for the assessment of generated models included 

accuracy, recall, F1 score, and precision, utilizing the Leave-One-Out 

Cross-Validation (LOOCV) method. Their suggested methodology was 

helpful in distinguishing between PD and HC, achieving a suboptimal 

accuracy rate of 90% utilizing K-NN. The accuracy might have been 

enhanced by employing deep learning methodologies such as recurrent 

neural networks and their derivatives. Setiawan et al. [13] suggested a 

paradigm for the detection and assessment of the severity of PD. The 

model was developed by emphasizing time-frequency-domain features, 

which were altered through Continuous Wavelet Transformation (CWT) 

to produce a spectrogram for enhanced visualization. Principal 

Component Analysis (PCA) was employed to augment model accuracy 

by identifying significant components from the extracted feature set. The 

VGRF dataset was utilized to construct DL models, supplemented by 10-

fold cross-validation to enhance generalizability. Separate models were 

constructed for each contributing dataset within the VGRF dataset, and 

the datasets were also amalgamated to develop more generalized models. 

The datasets underwent pre-processing to incorporate signal windows of 

10s, 15s, and 30s duration. The classification was conducted in two 

manners: binary classification distinguishing between PD and healthy 

subjects, and multiclass classification based on Hoehn & Yahr severity 

ratings, categorizing into PD Stage 2, PD Stage 2.5, PD Stage 3, and 

healthy subjects, resulting in four distinct groups. The optimal outcome 

for the classification of the merged dataset was attained with the Res Net 

Convolutional Neural Network, which achieved a modest accuracy of 

94.58%. They did not use a hybrid model, which may have enhanced their 

prediction accuracy scores. They did not test a reduced window size of 5 

s and stratified the VGRF dataset by sex, which may have enhanced their 

results. The proposed model incorporates additional complications in data 

transformations, which complicates its usability and hinders its scalability 

in real-time diagnosis. Joshi et al. [14] proposed an “automatic non-

invasive method for Parkinson’s disease classification” that was able to 

differentiate between Parkinson's gait and healthy subject gait by blending 

wavelet analysis with an SVM model. A low accuracy score of 90.32 % 

was obtained by considering only one gait parameter while considering 

specific gait variables, whereas the db2 wavelet underperformed the Haar 

wavelet decomposition [14]. The dataset had only 31 subjects, including 

16 healthy and 15 PD subjects, rendering the model’s performance 

inappropriate for a larger population. 

Methodology 

The suggested technique includes dataset description, exploratory data 

analysis, data preparation, proposed models, model building, and 

evaluation metrics. We executed all phases of the suggested methodology 

utilizing the "Google Colab" Jupyter Notebook with Python version 

3.11.11. The recommended methodology for the model-building process 

is illustrated in Error! Reference source not found. 
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Dataset Description 

The dataset utilized for the implementation of the proposed models was 

obtained from Physionet [10]. A secondary dataset was obtained for 

model development, which could be augmented using newly collected 

smart sensor data. The dataset was compiled from gait recordings 

obtained from the Movement Disorders Unit, Laboratory for Gait and 

Neurodynamics, Tel-Aviv Sourasky Medical Center. It was named in 

recognition of the researchers who contributed to its collection: Frenkel-

Toledo et al. [15] (labeled as ‘Si’), Hausdorff et al. [16] (labeled as ‘Ju’), 

and Yogev et  

al. [17] (labeled as ‘Ga’). This dataset consists of gait signals collected 

from 166 individuals, including 93 diagnosed with PD and 73 categorized 

as healthy controls. We obtained a dataset containing demographic 

information for exploratory data analysis and cleansing. Figure 2, adapted 

from the study by Alam et al. [18], shows the layout of the sensor 

placements when a subject is standing in a relaxed position with their feet 

parallel. The approximate (X, Y) coordinates are provided relative to a 

coordinate system centered between the legs, with the person facing in the 

direction of the positive Y-axis. 
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***Figure 2*** 

Exploratory Data Analysis 

The demographic data indicate the number of subjects from each study 

categorized by sex, as illustrated in Figure 3. The Hoehn and Yahr score 

for PD subjects was “2” for 55 subjects, “2.5” for 10 subjects, and 3 for 

18 subjects. This range signifies progression from early-stage Parkinson's 

(stages 1 and 2) to middle-stage disease, characterized by a more 

pronounced impact on daily functioning due to the onset of bilateral motor 

involvement, although independence is still preserved (Hoehn et al. [19]). 

The age distribution of the subjects, as illustrated by the boxplot in Figure 

4, indicated significant outlier values. The dataset comprised sensor 

readings from both subject groups organized as separate text files with the 

attributes outlined in Table 1. Additionally, looking at the readings from 

each study showed significant differences in how long data was collected, 

as shown in Figure 5. Analysis of the "Total Force Under Left Foot" and 

"Total Force Under Right Foot" from the 10-second to 15- second interval 

of a randomly selected subject from each study group revealed significant 

fluctuations in peak force achievements over time, as also emphasized by 

the research conducted by Navita et al. [3] Figure 6 illustrates the related 

graphs. 

Exploratory Data Analysis 

The demographic data indicate the number of subjects from each study 

categorized by sex, as illustrated in Figure 3. The Hoehn and Yahr score 

for PD subjects was “2” for 55 subjects, “2.5” for 10 subjects, and 3 for 

18 subjects. This range signifies progression from early-stage Parkinson's 

(stages 1 and 2) to middle-stage disease, characterized by a more 

pronounced impact on daily functioning due to the onset of bilateral motor 

involvement, although independence is still preserved (Hoehn et al. [19]). 

The age distribution of the subjects, as illustrated by the boxplot in Figure 

4, indicated significant outlier values. The dataset comprised sensor 

readings from both subject groups organized as separate text files with the 

attributes outlined in Table 1. Additionally, looking at the readings from 

each study showed significant differences in how long data was collected, 

as shown in Figure 5. Analysis of the "Total Force Under Left Foot" and 

"Total Force Under Right Foot" from the 10-second to 15-second interval 

of a randomly selected subject from each study group revealed significant 

fluctuations in peak force achievements over time, as also emphasized by 

the research conducted by Navita et al. [3] Figure 6 illustrates the related 

graphs. 

Attribute 1st Time (in centiseconds) 

Attributes 2nd-9th (Left Foot) VGRF (in Newton) measurements for each of eight sensors. 

Attributes 10th-17th (Right Foot) VGRF measurements for each of the eight sensors. 

Attribute 18th Aggregated force under the left foot 

Attribute 19th Aggregated force under the right foot. 

Table 1: Description of attributes in the utilized dataset. (Source: Yogev et al. [17]) 
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Data Preprocessing Demographic information was used to stratify the data according to sex. 

This methodology was selected because recent studies have shown that 

VGRF-based gait analysis can effectively distinguish between 
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Parkinson's disease patients and healthy controls with considerable 

accuracy (Navita et al. [3]); however, the particular influences of age and 

sex stratification on diagnostic efficacy using this technique are still 

inadequately investigated. Research by Haaxma et al. [20] reveals that 

females exhibit the onset of Parkinson's disease symptoms approximately 

2.1 years later than males, with average onsets occurring at 53.4 years for 

females and 51.3 years for males. The preprocessing pipeline integrates 

domain-specific factors to improve clinical relevance and model 

generalizability. Individuals under 50 years of age (n = 3) were excluded 

to conform to the study's emphasis on older populations exceeding 50 

years, as PD gait patterns in younger groups may indicate atypical 

etiologies. The variables "total force under left foot" and "total force under 

right foot" were eliminated because they were derived from the 

summation of the sensor readings for each foot individually. This removal 

also facilitated a direct pipeline for transmitting the VGRF values from 

each of the sixteen sensors to the model for efficient real-time prediction. 

The variable identifying the time in centi-second was also removed. 

Although existing research emphasizes longer durations of 10 s and initial 

trims of 20 s (Navita et al. [3]), we implemented a 5 s window with a 10 

s gait initiation trim, achieving a balance between temporal resolution and 

sample size sufficiency while reducing early stride variability. To 

standardize walking conditions, only the initial trial of each subject's 

single-task walking was retained, omitting dual-task trials that introduced 

confounding cognitive loads [21]. This targeted preprocessing adheres to 

established protocols for isolating PD-specific gait impairments during 

controlled clinical observation. These modifications highlight the 

essential importance of task-specific data curation in deep learning 

applications, where improper segmentation or the inclusion of diverse 

tasks can artificially enhance training performance at the expense of real-

world validity. 

Proposed Models 

LSTM Network 

A Long Short-Term Memory (LSTM) network mitigates the vanishing 

and exploding gradient issues inherent in traditional Recurrent Neural 

Networks (RNN) by utilizing memory cells and gated mechanisms (input, 

forget, and output gates) to preserve essential temporal dependencies, as 

introduced by Hochreiter et al., [22]. As the name suggests, the forget gate 

determines which elements of information from the preceding cell state 

should be retained and which should be removed. This is accomplished 

by employing a sigmoid activation function on the concatenation of the 

preceding hidden state and the current input, producing values ranging 

from 0 to 1, which acts as a filter for the prior cell state. After determining 

what to forget, the input gate reviews the present input and produces new 

candidate values for potential inclusion in the cell state. Sigmoid 

activation identifies the elements that should be updated, whereas a 

separate layer constructs a vector of potential values to be incorporated. 

The next step involves updating the cell state by merging the preserved 

information from the previous state filtered through the forget gate with 

the newly generated candidate values scaled by the input gate. The output 

gate utilizes the revised cell state to determine the information to be 

transmitted as a hidden state, which is subsequently employed in further 

computations and layers. This mechanism allows the LSTM network to 

balance the retention of long-term memory with the integration of new 

inputs, rendering it particularly effective for tasks such as distinguishing 

between PD and healthy individuals. Equations 1 through 6 in Table 2 

elucidate the processes occurring within an LSTM cell, as illustrated in 

Figure 7. 

 

Bidirectional LSTM Network 

Bidirectional LSTM networks, initially presented by Graves et al. [23], 

augment unidirectional LSTM networks by incorporating a parallel 

LSTM layer capable of capturing temporal patterns and dependencies in 

the reverse direction. They can process input sequences in both forward  

and backward directions, rendering them an effective model for signal 

processing and modeling, where capturing context from both the past and 

the future is crucial. They require increased training duration and 

computational resources relative to the LSTM model. Figure 8 illustrates 

its operation.! "  "# $ %& %# # ' !(& %# )##" * "*  
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Gated Recurrent Unit Network 

Gated Recurrent Unit (GRU) networks were introduced by Cho et al. [24] 

and are specifically engineered to manage sequential data by 

comprehending and retaining intricate patterns. Their components include 

gates and memory units that enable the GRU network to understand 

relationships across various time intervals, providing improved 

computational efficiency relative to traditional LSTM networks. It 

comprises two gates: a reset gate and an update gate. The reset gate 

ascertains the extent to which the prior hidden state should be disregarded, 

whereas the update gate evaluates the degree to which the current input 

should be utilized to update the hidden state. Both gates are associated 

with the hidden state. They differ from LSTMs by merging the forget and 

input gates into a singular "update gate," which facilitates the precise 

regulation of information flow to effectively manage essential data within 

sequences. The GRU network lacks an output gate and utilizes a more 

concise set of parameters than the LSTM network. Yang et al. [25] 

examined the dual aspects of performance and computational cost, 

revealing that the performance-cost ratio of GRU surpassed that of 

LSTM. Figure 9 illustrates the architecture of a GRU cell, and the 

accompanying equations elucidate the computations occurring within it. 

+,# " -  " .  /            , 0"*" - “. 0          ,  

  #)# " )##" *  " .   tanh   0      ,  

 ) 5 )##" * " .   17 /     /  

 

Bidirectional GRU network 

Bidirectional Gated Recurrent Unit (bi-GRU) networks enhance the 

functionality of unidirectional GRU architectures by integrating two 

parallel GRU layers: one that processes input sequences in the forward 

temporal direction and another that processes them in reverse. This dual 

processing allows the model to capture contextual dependencies from 

both prior and subsequent elements of sequential data, such as VGRF 
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signals in the Parkinsonian gait analysis. In contrast to unidirectional 

models, the bidirectional architecture of bi-GRU is particularly proficient 

in situations that require a comprehensive temporal context, such as 

detecting stride irregularities or gait initiation anomalies. Despite being 

computationally more demanding than conventional GRUs owing to the 

increased parameterization, the superior feature extraction capabilities of 

bi-GRUs validate their application in clinical motion analytics. Figure 10 

provides a visual representation that resembles the structure of the 

bidirectional LSTM network. 

 

Model Development 

The suggested DL architecture for detecting PD using gait-based VGRF 

sensor data maintains a uniform structural framework across all four  

models, differing solely in the selection of optimal hyperparameters, as 

illustrated in Figure 11. 

 

L2 regularization 

L2 regularization is a commonly employed method in deep learning to 

mitigate the effects of overfitting and produce enhanced model 

generalization. This is achieved by incorporating a penalty term into the 

original loss function. This penalty deters excessive weight values, 

thereby streamlining the model and reducing its susceptibility to noise in 

training data. Mir et al. [7] also illustrated the efficacy of this 

regularization method in their model development. An identical 

methodology was selected for model training based on their work. The 

mathematical expression is as follows: 313 8 ** &  8 **_$: ! )  &  ;  < & 

The "loss_ function" refers to the binary cross-entropy loss, "w" denotes 

the model weights acquired during an iteration, "wi" signifies individual 

coefficients, and "λ" (lambda or alpha) is the regularisation parameter that 
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regulates the intensity of the penalty. An elevated lambda value leads to 

enhanced regularization, promoting reduced non-zero coefficients and 

preventing any individual feature from dominating the model's 

predictions. 

 Adam Optimizer 

An optimization technique extensively employed in training deep neural 

networks, yielding faster convergence rates than traditional optimization 

algorithms, was introduced by Kingma et al. [26] by integrating the 

characteristics of RMSprop and momentum-based gradient descent 

methods. Mir et al. [7] utilized it in their model development to attain 

remarkable convergence speed and predictive accuracy regarding the 

freezing of gait. Rehman et al. [27] also demonstrated its efficacy in 

training deep neural networks for the detection of Parkinson's disease. Its 

capacity to adjust to the calculated gradients of the loss function 

iteratively modify learning rates renders it resilient to noisy gradients 

while simultaneously ensuring efficient memory usage and expedited 

convergence through hyperparameter selection. 

Dropout Layer 

A regularization technique for deep neural networks, introduced by 

Srivastava et al., that alters intermediate neural connections by randomly 

deactivating incoming neurons and their connections with a probability of 

p. This strategy prevents hidden units from becoming overly reliant on 

one another (co-adaptation), promoting stronger and more generalized 

learning while mitigating overfitting. Mir et al. [7], Rehman et al. [27], 

and additional studies employing DL models extensively utilize this 

technique to enhance model robustness and generalizability. We 

established the value p for each model through hyperband hyperparameter 

tuning. 

Early Stopping 

A distinct regularization technique that halts the training process upon 

detecting overfitting by assessing the model's performance on the 

validation set throughout the training phase. In 1998, Prechelt [28] 

emphasized its effectiveness, a period of time when computational 

resources of time and space were constrained. Currently, it enhances the 

training process by halting it based on performance metrics, specifically 

"val_ accuracy," and the "patience" parameter, which determines the 

number of epochs to wait before assessing whether learning has improved 

or declined. It also enabled us to recover the optimal weights acquired 

when the model attained peak performance during training. This led to 

employing a reduced number of epochs during the training phase 

compared to the initially defined range based on the study by Mir et al. 

[7] 

Hyperparameter Tuning 

Hyperparameters are model parameters not directly acquired during 

training; instead, they are configuration variables that govern the model's 

learning process. They are established prior to training and remain 

unchanged throughout the training process. Hyperparameter tuning is 

crucial for the network's learning of the underlying function within an 

extensive hyperparameter search space. Hyperband hyperparameter 

tuning reallocates resources dynamically based on intermediate 

outcomes, rendering it exceptionally efficient for iterative algorithms 

such as deep learning models, as demonstrated by Li et al. [29]. Our 

proposed models employed a consistent methodology to guarantee the 

efficient learning of optimal hyperparameter configurations for each 

individual model, as presented in Table 3. 

Model Units in 1st 

Recurrent 

Layer 

L2 

regularization value 

Dropout rate Units in 2nd 

Recurrent 

Layer 

Learning Rate 

for Adam 

Optimizer 

Total epochs of 

training with early 

stopping 

LSTM (Males) 256 0.0005 0.3 96 0.0005 80 

Bi-LSTM (Males) 128 0.0001 0.1 64 0.0005 80 

GRU (Males) 256 0.0005 0.1 64 0.001 80 

Bi-GRU (Males) 256 0.0005 0.1 32 0.001 50 

LSTM (Females) 256 0.005 0.1 64 0.0005 64 

Bi-LSTM (Females) 256 0.0005 0.2 64 0.001 30 

GRU (Females) 256 0.005 0.2 128 0.001 27 

Bi-GRU (Females) 256 0.0005 0.2 32 0.005 43 

Table 3: Modeling Hyperparameters for Males and Females. 

Evaluation Metrics 

Confusion matrices were created to assess the performance of the 

developed models. Performance metrics such as accuracy, recall, 

precision, and F1 scores were computed. This aligns with research 

conducted by scholars such as Navita et al. [3], Mir et al. [7], Rehman et 

al. [27] Pham [30], Rashnu et al. [31], and others, wherein PD detection 

was approached as classification issue. Accuracy as a performance metric 

quantifies the ratio of correct predictions (true positives and true 

negatives) for both classes relative to the total predictions made by the 

model, thereby explaining the model's efficacy for each class [27]. The 

percentage of true positives to all actual positives is measured by recall 

[27], including false negatives, which involve misclassifying Parkinson's 

disease patients as healthy, are crucial in clinical contexts, as undiagnosed 

Parkinson's disease can postpone treatment and exacerbate outcomes. It 

guarantees the detection of the majority of Parkinson's cases. Precision 

quantifies the ratio of true positives predicted by the model to  

the aggregate of both true positives and false positives. Misclassifying a 

healthy individual as a Parkinson's patient may result in superfluous 

expenditure of resources, including time and money, as well as induce 

anxiety for the individual. Precision guarantees that the model reduces 

such errors. F1 scores amalgamate the performance metrics of recall and 

precision as their harmonic mean, thereby balancing both into a singular 

metric. This is especially beneficial for imbalanced datasets such as PD 

classification, where both false positives and false negatives carry 

substantial repercussions. Another crucial evaluation tool is the Receiver 

Operating Characteristic curve, abbreviated as ROC, which assesses and 

helps strike an equilibrium between the true positive rate (sensitivity) and 

the false positive rate across various thresholds of a binary classifier [27], 

as per the tolerance criteria of misclassification. The measurement of the 

total differentiation between classes is achieved by calculating the area 

under the curve (AUC). ROC-AUC is robust against class imbalance and 

provides insights into the model's efficacy in distinguishing between 
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healthy individuals and those with Parkinson's disease. It is particularly 

beneficial for model comparison or the optimization of decision 

thresholds aligned with therapeutic aims. 

Results 

Male subjects 

The aforementioned performance metrics are presented herein. Figures 12 

to 15 present confusion matrices for the comparison of models developed 

for males. Positive and negative class labels are denoted as “1” and “0,” 

respectively, with “1” indicating a PD subject and “0” indicating a healthy 

subject. 

  

  
Figure 16: Presents the individual performance metrics of the models. 

 
The ROC-AUC plot of the models is presented in Figure 17. 
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Since GRU models, whether unidirectional or bidirectional, demonstrate 

comparable performance to LSTM-based models, their reduced 

parameter requirements render them more efficient in training relative to 

LSTM-based models. The findings indicate that these models are equally 

proficient in identifying pertinent sequential patterns in the data for males 

and may be favored over alternative models. 

Female Subjects 

The confusion matrices for each model are presented from Figure 18 to 

21 for comparison. 

  

  
Individual performance metrics of models are highlighted in Figure 22. 
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The ROC-AUC plot of the models is presented in Figure 23. 

 
The unidirectional GRU model surpasses the LSTM, bi-LSTM, and its 

bidirectional variant, bi-GRU, in accuracy, recall, and F1 score. Although 

the other models yield comparable performance metrics, the GRU, being 

the more lightweight model in terms of parameter count and efficient 

training, effectively captures the pertinent sequential patterns in the data 

for females with superior performance and may be favoured over the 

alternative models. 

Discussion 

The development of sex-stratified recurrent neural network designs for 

PD identification via VGRF data represents a significant advancement in 

deep learning techniques for diagnosing neurological illnesses. Our 

findings address critical deficiencies in the existing literature by 

demonstrating that sex-specific modeling, integrated with shorter time 

window analysis, yields highly effective diagnostic performance. Our 

findings reveal notable differences in model performance between male 

and female groups, supporting the biological hypothesis that PD 

manifests differently across sexes. In male subjects, both unidirectional 

and bidirectional GRU models achieved comparable accuracy (98.5%), 

demonstrating outstanding recall (98.91%) and precision (98.64%) 

metrics. In contrast, for female subjects, the unidirectional GRU 

outperformed all other architectures, attaining an accuracy of 99.46%, a 

recall of 100%, and an F1 score of 99.48%. The models' performance 

aligns with the findings of Haaxma et al. [20], who identified sex- based 

disparities in the onset and progression of PD. The sex-specific models 

likely revealed distinct biomechanical adaptations to dopaminergic 

degeneration that may have been masked in a combined model. This 

observation has important clinical implications, suggesting that 

diagnostic tools for PD should incorporate sex as a critical variable rather 

than treating it solely as a demographic factor. The implementation of 5 s 

time windows represents a methodological advancement over previous 

studies that primarily utilized 10 s or longer time intervals. This reduces 

the time required for data collection and has practical implications for 

clinical implementation, as shorter assessment intervals are more feasible 

in time-constrained clinical settings and less burdensome for patients with 

mobility challenges. Despite the shorter duration, our models exhibited 

superior performance relative to those reported in the literature that 

employed longer windows, including the studies by Navita et al. [3] 

(97.5% accuracy), Mir et al. [7] (97.71% accuracy), and Setiawan et al. 

[13] (94.58% accuracy). This highlights the importance of using shorter 

time intervals in the investigation of alternative biomarkers of PD, as this 

approach may reveal hidden temporal dependencies that could be masked 

in longer time frames. The comparative analysis of RNN variants revealed 

that GRU-based architectures consistently outperformed LSTM 

counterparts across both sex cohorts while requiring fewer parameters. 

For male subjects, the unidirectional and bidirectional GRU models 

achieved the same accuracy (98.5%), F1 score (98.78%), and other 

performance metrics. The unidirectional GRU significantly surpassed all 

other architectures, including its bidirectional counterpart, for female 

subjects. This performance pattern challenges the prevalent belief that 

bidirectional architectures inherently produce better outcomes for time-

series classification tasks. The added complexity and computational 

expense of bidirectional processing did not yield significant performance 

enhancements, especially for female subjects. This finding suggests that 

forward sequential patterns in VGRF data are sufficiently distinctive for 

PD classification, whereas the reverse temporal context captured by 

bidirectional models offers minimal diagnostic value. The improved 

efficiency of GRU models is particularly relevant for potential use in 

resource-constrained environments or mobile applications, where 

computational efficiency directly affects accessibility. The comparable 
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effectiveness of unidirectional GRUs to more complex architectures 

suggests that simplified models may be adequate for efficient PD 

screening, potentially enabling wider adoption of these technologies in 

primary care settings. Despite the positive results, several limitations 

require further investigation. The dataset used for model development 

included subjects with moderate Parkinson's disease severity (Hoehn 

46and Yahr scores of 2 to 3), potentially limiting the models' applicability 

to earlier disease stages where subtle gait abnormalities may be less 

apparent. Subsequent research should validate these methodologies on 

populations with earlier stages of Parkinson's Disease to evaluate their 

efficacy for preclinical detection. Secondly, although sex stratification 

enhanced model efficacy, other demographic variables, including age-

specific cohorts, cultural differences in gait patterns, and comorbidities 

influencing mobility, were not explicitly incorporated into the model. 

Investigating these supplementary stratification dimensions may enhance 

the personalization of PD detection algorithms. Ultimately, the existing 

models that concentrate solely on VGRF data, when integrated with 

additional biomarkers of PD, such as features derived from 

accelerometers, voice analysis, or digital biomarkers from smart devices, 

could establish more comprehensive detection systems. Future research 

should explore multimodal approaches that combine these 

complementary data sources to improve diagnostic accuracy. 

Conclusion 

This study introduces a new methodology employing recurrent deep 

neural networks to create sex-specific models for identifying PD, laying 

the groundwork for the investigation of sex-specific diagnostic 

approaches. These models effectively identify temporal dependencies in 

VGRF signal data and exhibit notable classification performance when 

analyzed over short 5 s intervals. The rigorous data preprocessing ensures 

the exclusion of individuals under 50 years of age from the learning 

process, facilitating a more precise representation of the signal data from 

the older population. The implemented approach emphasizes the 

architectural benchmarks to consider when training recurrent neural 

networks for the utilization of VGRF signals in the diagnosis of PD. The 

model demonstrates that stratification based on demographic factors of 

sex and age can enhance the predictive accuracy for Parkinson's disease. 

This methodology is applicable to other neurodegenerative disorders, 

such as Alzheimer's disease, Huntington's disease, and various gait-

related conditions. The integration of supplementary biomarkers of 

Parkinson’s disease using this method can significantly improve the 

diagnostic process. This method simplifies the data transformation 

processes used in many studies, making it a viable choice for real-time 

clinical detection. 
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