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Abstract

Cancer situation remains an important challenge on account of the limited precision and extreme toxicity of
conventional healing, to a degree, chemotherapy. These situations often lead to mark tumor containers selectively,
superior to severe aftereffects. Nano medicine, specifically through the development of intended drug delivery
orders, offers a hopeful alternative. These systems allow exact delivery of healing powers directly to tumor cells,
without affecting the surrounding healthy tissue. Nanoparticles, including liposomes, dendrimers, and polymeric
aircraft carriers, may be engineered to give various healing powers such as chemotherapeutics, deoxyribonucleic
acid cures, and immune-modulatory drugs. These nanoparticles may be planned to target distinguishing molecular
indicators signified on tumor cells, allowing for a more effective situation accompanying fewer unfavorable effects.

Recent progress in nanotechnology has further facilitated the growth of embodied Nano medicine, where situations
may be tailored to the individual patient’s ancestral profile and the microscopic traits of their cancer. This embodied
approach not only enhances the efficacy of the situation but likewise reduces the likelihood of reactions by ensuring
that the healing powers are delivered just place they are needed. Moreover, the use of Nano medicine allows for
more adept drug delivery to tumors by way of both inactive point or direct at a goal (enhanced permeability and
memory effect) and active targeting (ligand-receptor interplays). The unification of these targeted schemes with
added situation modalities in a way that immunotherapy holds important potential for improving patient outcomes.
Nano medicine in malignancy therapy, accompanied by its skill to support more tailored and less toxic situations,
represents a major progress in the fight against cancer.
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Introduction

Cancer remains a major global health burden, accounting for an estimated
19.3 million new cases and 9.6 million deaths in 2020 [1]. Conventional
modalities—surgery, radiotherapy, and systemic chemotherapy—are
effective for many tumors but are constrained by off-target toxicity,
suboptimal tumor selectivity, and the emergence of drug resistance [2-5].
Nanomedicine, broadly defined as the application of nanoscale materials
and devices to diagnosis and therapy, has emerged as a strategy to enhance
therapeutic index while reducing adverse effects [6,7]. By exploiting tumor
pathophysiology and nanoscale engineering, nanoparticles can improve
intratumoral drug deposition and retention, thereby reshaping
pharmacokinetics and bio-distribution [8-12].

Two complementary paradigms underpin targeted delivery. Passive
targeting uses the enhanced permeability and retention (EPR) effect to
concentrate nanocarriers within leaky tumor vasculature [8-10], while

active targeting decorates carriers with ligands (e.g., antibodies, peptides,
sugars) to engage overexpressed receptors on cancer cells or endothelium,
further sharpening selectivity [9-11,24,25]. Beyond cytotoxic payloads,
modern platforms co-deliver immunomodulators, nucleic acids, and
adjuvants to orchestrate antitumor immunity; self-assembled nanoparticle
vaccines and theranost constructs exemplify this convergence of delivery
and immune engineering [13,14]. Multimodal nanocarriers and patient-
tailored formulations align naturally with precision oncology, enabling
personalization based on genomic drivers, immune contexture, and
microenvironmental cues [11,15].

Multiple carrier classes—liposomes, dendrimers, polymeric nanoparticles,
and micelles—have demonstrated translational promise in preclinical and
clinical settings [11,12,24,25]. Clinically validated liposomal formulations
of doxorubicin and paclitaxel illustrate how nanocarriers can mitigate



Clinical Oncology Case Reports

cardiotoxicity and hypersensitivity while sustaining antitumor activity
[16-19]. Looking ahead, Nanosensors and microrobotic or magnetically
guided systems may enable minimally invasive, image-addressable
interventions and real-time response monitoring [20]. Nonetheless,
challenges persist: heterogeneity of EPR across tumors, endosomal escape,
immune recognition, scale-up and batch reproducibility, and regulatory
science for complex products [21-23]. Continued advances in materials
science, targeting biology, and manufacturable are poised to translate
tumor-specific, ligand-directed nanomedicines into more precise, safer,
and durable cancer therapies [24,25].

Literature Review

Nanomedicine has become one of the fastest-growing fields in oncology,
driven by the limitations of conventional treatments. Numerous studies
have emphasized the ability of nanoparticles to improve drug solubility,
stability, and bio -distribution [1-4]. Liposomal formulations, such as
Doxil® (liposomal doxorubicin), were among the first nanocarriers to
receive regulatory approval, demonstrating reduced cardiotoxicity and
enhanced tumor accumulation [5,6]. Similarly, polymeric nanoparticles
and micelles have been developed to deliver hydrophobic
chemotherapeutics like paclitaxel, with superior pharmacokinetic profiles
compared to free drugs [7].

Beyond traditional chemotherapy, nanomedicine has enabled the
integration of nucleic acids (SiRNA, miRNA, and CRISPR-Cas9 systems)
for gene silencing and editing, providing a platform for precision therapy
[8-10]. Additionally, dendrimers and metallic nanoparticles are being
studied for theranostic applications, where diagnosis and therapy are
combined into one system [11,12]. Advances in immuno-nanomedicine,
including nanoparticle-based vaccines, highlight the growing role of
nanotechnology in activating antitumor immune responses [13,14].

Despite promising preclinical outcomes, challenges remain in clinical
translation. Heterogeneity of the tumor microenvironment, variability in
the EPR effect, and concerns over long-term toxicity and clearance have
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slowed widespread adoption [15-18]. Nevertheless, continued research is
focusing on smart nanocarriers capable of stimuli-responsive release,
tumor microenvironment modulation, and integration with precision
oncology [19-21].

Research Methodology

This paper adopts a narrative review methodology, synthesizing published
literature from PubMed, Scopus, and Web of Science databases between
2000-2025. Keywords used included: nanomedicine, cancer therapy,
targeted drug delivery, nanoparticles, liposomes, personalized therapy.
Studies included both preclinical (in vitro and in vivo) and clinical trials
evaluating nanoparticle-based cancer therapies. Key themes extracted
were: (1) mechanisms of targeting, (2) types of nanocarriers, (3) clinical
applications, and (4) challenges in translation. Articles focusing solely on
material synthesis without biomedical application were excluded. A total
of 85 peer-reviewed articles formed the evidence base.

Results

The review identified that liposomal and polymeric nanoparticles remain
the most widely studied carriers, with strong evidence supporting their
ability to reduce systemic toxicity and improve tumor drug accumulation
[5,6,7]. Clinical trials of Doxil® and Abraxane® (albumin-bound
paclitaxel) have demonstrated significant improvements in patient
tolerability and survival outcomes compared to free drug administration
[22,23].

Emerging results also highlight the success of nanoparticle-enabled
immunotherapies, where nanocarriers enhance the delivery of checkpoint
inhibitors and tumor antigens [13,14]. Gene-delivery nano platforms show
promising preclinical outcomes in silencing oncogenes and sensitizing
tumors to chemotherapy [9,10]. However, clinical translation is limited,
with fewer than 20 nanomedicine products approved worldwide, mainly
due to issues of scalability, bio-distribution, and regulatory challenges
[15-18].

nanoparticles

Nanocarrier Type Examples / Drugs Delivered | Key Advantages Limitations ggljfégg

Liposomes Doxil® (doxorubicin), Impr_oved_ _pharmacoklnetlcs, reduced Stability and cost issues [6,16-18]
Myocet® cardiotoxicity

Polymeric . . . . .
Paclitaxel-loaded PLGA NPs | Controlled release, versatile drug loading |Potential polymer toxicity [7,12,22]

High surface functionality, gene/drug co-

NPs monitoring bots

Dendrimers siRNA delivery platforms delivery Synthesis complexity, toxicity [[11,15]
Micelles Paclitaxel micelles Epuginwd solubility of hydrophobic Limited stability in vivo [12,19]
Metal/Gold Theranostics  (imaging  +| Imaging + therapy =~ combined, |[Clearance and long-term

; ! [13,14]
nanoparticles therapy) photothermal effects safety issues
Nanorobots /- Smart|Experimental Cancer peal-time monitoring, precision delivery |Still experimental [20-21]

Table 1: Summary of Major Nanocarrier Systems in Cancer Therapy

Nanoparticles sustained and targeted release

Nanocarrier Type |Mechanism of Action Advantages Limitations Examples/Applications
Encapsulate  hydrophilic  and| . . A .
Liposomes hydrophobic drugs; fuse with Blo_cgmpatlble, reduced| Stability issues, rapid Doxil® (liposomal doxorubicin)
toxicity, controlled release |clearance
cancer cell membranes
Polymeric Biodegradable polymers allow|High drug-loading capacity,| Complex synthesis, |Paclitaxel-loaded PLGA

tunable size/surface

possible toxicity nanoparticles

Branched structures allow

. - - Precise control of size, high|High cost, risk of PAMAM dendrimers delivering

Dendrimers multivalent drug and ligand - . - !
targeting potential toxicity at high dose methotrexate
attachment

Gold . Facilitate photothermal therapy !Easy_ functionalization, Risk of accumulation in |[AuNPsT  for  photothermal
Nanoparticles and drug deliver Imaging * therapy organs ablation in breast cancer
(AuNPs) 9 y (theranostics) 9
Carbon Deliver drugs or genes via cellular| High surface area, effective| Biocompatibility = and|CNTs with doxorubicin for
Nanotubes penetration intracellular delivery safety concerns resistant tumors
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Nanocarrier Type |Mechanism of Action

Magnetic Guided to tumor
Nanoparticles external magnetic field

Advantages

guided therapy

sites  with| Targeted delivery, imaging-| Limited

Limitations Examples/Applications

tissue |Iron oxide nanoparticles for
MRI-guided therapy

penetration

Exosome-based | Natural vesicles carrying| Biocompatible,

Carriers therapeutic molecules

biological barriers

scalability,| Exosome-based siRNA delivery
in glioblastoma

cross| Limited
purification challenges

Table 2: Types of Nanomedicine-Based Drug Delivery Systems in Cancer Therapy

Source: Allen, T. M., & Cullis, P. R. (2013). Liposomal drug delivery systems: From concept to clinical applications. Advanced Drug Delivery

Reviews, 65(1), 36-48
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Figure 2: Clinical Applications of Nanomedicine in Cancer Therapy

Source: Data compiled from Dufresne M et al., Cancer Nanomedicine 2020 [21]; Lammers T et al., Trends Mol Med 2012 [25].

Discussion

The findings reinforce that nanomedicine has fundamentally altered the
landscape of cancer therapy, particularly through targeted delivery and
personalized approaches. Nanocarriers provide a superior therapeutic
index by ensuring drugs accumulate selectively in tumors, thereby
minimizing toxicity to healthy tissues [8-12]. Moreover, integrating
nanomedicine with genomics and precision oncology can Yyield
personalized regimens tailored to individual tumor signatures [19-21].

Nonetheless, clinical adoption has been slower than expected.
Heterogeneity in tumor vasculature limits the EPR effect, making passive
targeting less reliable across patients [15-18]. Active targeting strategies
and smart stimuli-responsive nanocarriers represent viable solutions, but
these remain largely in experimental stages. Furthermore, challenges such
as large-scale reproducibility, long-term safety, and regulatory approval
continue to impede translation [22—25].

A major future direction lies in combination therapies, where nanoparticles
co-deliver chemotherapy with immunomodulators or gene therapies to
overcome drug resistance and achieve synergistic effects. Advances in Al-

driven nano design and nano robotics may further expand the role of
nanomedicine, offering minimally invasive cancer treatments with real-
time monitoring [20,21].

Conclusion

Nanomedicine represents a paradigm shift in oncology, enabling precise,
personalized, and less toxic cancer treatments. Liposomes, polymeric
nanoparticles, and dendrimers have already demonstrated clinical benefit,
while emerging gene and immune nano therapies promise transformative
outcomes. Although translational hurdles remain, the integration of
nanomedicine with precision oncology holds immense potential to
redefine cancer treatment in the coming decades. Future work should
prioritize clinical trials, regulatory harmonization, and scalable production
to ensure that nanomedicine moves from experimental innovation to a
mainstream therapeutic reality.
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