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Abstract 

This paper proposes a closed-loop neural interface system in which artificial intelligence (AI) interprets real-time CCTV 

video and transmits environmental awareness to blind individuals via direct visual cortex stimulation. Feedback in the 

form of visually evoked potentials (VEPs) is collected and analyzed by AI to iteratively refine the quality of perception. 

We incorporate DNA origami nanotechnology to enhance neural interface fidelity, stability, and signal translation. This 

framework unites AI, nanobiotechnology, and brain–computer interface (BCI) technology to simulate a functional visual 

replacement for the visually impaired. 
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Introduction 

Blindness remains one of the most profound sensory impairments, with 

limited therapeutic options when retinal or optic nerve degeneration is 

present [1]. The emergence of AI, neural interfaces, and DNA 

nanotechnology presents new avenues for neuroprosthetic vision through 

direct cortical stimulation [2,3]. By leveraging environmental inputs from 

public CCTV systems or wearable cameras, AI can analyze and encode 

navigational and spatial data [4]. This visual information can then be 

transferred to the occipital cortex through patterned stimulation [5], 

mimicking visual perception [6]. 

1. AI-Driven Visual Interpretation 

Deep learning frameworks such as convolutional neural networks (CNNs) 

and transformer-based vision models (e.g., Vision Transformers) allow rapid 

object recognition and spatial encoding [7,8]. Systems like YOLOv8 and 

DeepLab can parse live video into semantic maps [9,10]. With geospatial 

tagging and trajectory prediction [11], these maps can be converted into 

stimulation-ready data packets. 

2. Visual Cortex Stimulation Techniques 

Stimulation of the visual cortex has shown success in eliciting phosphenes 

and object recognition in blind participants [12,13]. Cortical implants (e.g., 

Utah array [14]) and transcranial magnetic stimulation (TMS) are prominent 

approaches [15]. Optogenetic modulation offers molecular precision but 

requires gene modification [16,17]. 

3. Feedback via Evoked Potentials 

Visually evoked potentials (VEPs) reflect cortical responsiveness to stimuli 

and are detectable through EEG, ECoG, or MEG [18]. AI can decode VEP 

patterns using spatiotemporal mapping and feedback optimization 

algorithms [19]. Studies show that such feedback loops enhance the 

perceptual accuracy of visual neuroprostheses [20]. 

4. DNA Origami Interface Enhancement 

DNA origami nanostructures have been used to assemble neuron-compatible 

interfaces with nanoscale precision [21]. They can deliver optogenetic 

agents, anchor signal-transducing proteins, and even translate molecular 

inputs into electrical outputs [22]. Graphene-DNA hybrids further improve 

conductance and neuron binding [23,24]. 

5. System Architecture and Integration 

The proposed system includes: (1) AI processing of CCTV input; (2) 

stimulation of the visual cortex through wireless or implanted electrodes; (3) 

real-time VEP collection; (4) AI adjustment of signal patterning. DNA 

nanostructures enhance interface fidelity at the neural-electrode junction 

[25]. A feedback loop optimizes perception quality using VEP data. 

5.1 Pathway for CCTV Image Processing and Visual Cortex Stimulation 
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The process of translating real-world visual input from CCTV systems into 

perceivable virtual images for blind individuals involves a multi-step 

pathway integrating advanced AI, graphene-DNA origami-enhanced neural 

interfaces, and closed-loop feedback. The following delineates the sequential 

workflow: 

1. CCTV Image Acquisition: High-frame-rate cameras, either from public 

CCTV systems or wearable devices, capture real-time environmental visuals. 

These cameras operate at a minimum of 60 fps to ensure smooth motion 

rendering, with resolutions of at least 1080p to provide sufficient detail for 

object and scene parsing. 

2. AI-Driven Image Processing: The captured video feed is processed by a 

hybrid convolutional neural network (CNN) and vision transformer (ViT) 

pipeline. The CNN component, leveraging architectures such as YOLOv8, 

performs rapid object detection and classification, achieving 94.3% accuracy 

in urban and indoor environments, as demonstrated in section 9.1. 

Simultaneously, the ViT module segments scenes into semantic clusters, 

identifying edges, objects, and depth cues via monocular video analysis. An 

attention-weighted saliency map prioritizes perceptually relevant elements 

(e.g., obstacles, moving objects), compressing the visual data into a 512 × 

512 stimulation matrix within 47 ms. 

3. Signal Encoding for Neural Stimulation: The processed visual data is 

encoded into spatial–temporal stimulation patterns tailored for the primary 

visual cortex (V1). The AI maps salient visual elements to retinotopic 

coordinates, ensuring that the stimulation matrix corresponds to the brain’s 

visual field organization. This encoding translates complex scenes into 

biphasic current pulses, optimized for subthreshold or suprathreshold 

delivery to elicit phosphenes or recognizable patterns. 

4. Graphene-DNA Origami Interface Transmission: The encoded 

stimulation patterns are transmitted to the visual cortex via graphene-DNA 

origami-enhanced microelectrode arrays (MEAs). These MEAs, described 

in section 8.3, utilize DNA nanostructures functionalized with neuron-

adhesive ligands (e.g., L1CAM peptides) and integrated with ultrathin 

graphene layers. This hybrid interface achieves a 2.6× increase in neural 

adherence and 3.2× lower impedance compared to traditional silicon-based 

arrays, enabling high-fidelity signal transduction with minimal tissue 

damage. The graphene-DNA origami structures anchor to cortical neurons, 

ensuring precise delivery of electrical pulses to targeted V1 regions. 

5. Visual Cortex Stimulation: The MEAs deliver biphasic current pulses to 

stimulate V1 neurons, inducing phosphene-like perceptions or patterned 

visual sensations. The stimulation parameters (e.g., pulse amplitude, 

frequency, and duration) are dynamically adjusted based on real-time 

feedback to optimize perceptual clarity. In experimental results (section 9.4), 

this approach enabled non-human primates to navigate obstacle courses and 

human volunteers to perceive geometric light patterns corresponding to 

object contours. 

6. Feedback via Visually Evoked Potentials (VEPs): Real-time VEPs are 

recorded using non-invasive scalp EEG or intracortical local field potentials 

(LFPs). These VEPs, characterized by latency, amplitude, and waveform 

morphology, reflect the cortex’s response to stimulation. An AI-driven 

feedback loop analyzes VEP patterns using spatiotemporal mapping and 

machine learning algorithms, achieving iterative optimization of stimulation 

patterns. As reported in section 9.3, VEP-based feedback improved cortical 

pattern discrimination from 61.5% to 89.8% over five sessions, enhancing 

the fidelity of the perceived virtual image. 

7. Perception of Virtual Image: Through iterative refinement, the 

stimulation patterns evoke consistent and interpretable visual perceptions in 

the blind individual. The AI integrates VEP feedback to fine-tune the 

stimulation matrix, ensuring that the virtual image aligns with the real-world 

scene captured by the CCTV. Human volunteers reported perceiving object 

contours and motion cues, with reproducible P100 VEP components 

indicating activation of motion-processing pathways. 

6. Discussion and Ethical Implications 

While cortical prostheses for vision are under development [26], combining 

AI interpretation and neural feedback sets a precedent for adaptive synthetic 

vision. Privacy, data security, and informed consent remain critical as closed-

loop brain-AI systems evolve [27]. Future research should explore adaptive 

learning of neural languages and biocompatible nanosystems. 

Materials and Methods: Vision-to-Cortex AI Feedback in the Blind 

1. System Design and Workflow 

A closed-loop visual prosthetic architecture was designed analogous to the 

auditory system, with four key components: 

1. AI vision parser using convolutional neural networks (CNNs) 

and vision transformers (ViTs); 

2. Signal encoding into spatial stimulation patterns for the primary 

visual cortex (V1); 

3. DNA origami-enhanced microelectrode arrays (MEAs) for 

precise neural delivery; 

4. Visual evoked potential (VEP) feedback loop to refine real-time 

encoding fidelity. 

2. Environmental Image Acquisition and AI Processing 

Visual input was captured through high-frame-rate cameras mounted on 

glasses. A hybrid CNN–ViT pipeline segmented scenes into objects, edges, 

and semantic clusters. Depth inference and motion detection were integrated 

via monocular video analysis. Salient visual elements were prioritized using 

an attention-weighted saliency map and converted into stimulation matrices 

targeting V1 retinotopic regions. 

3. DNA Origami Interface Fabrication 

DNA nanostructures were synthesized using scaffolded origami techniques 

and functionalized with neuron-adhesive ligands (e.g., L1CAM peptides). 

These structures were integrated into ultrathin graphene–DNA hybrid 

MEAs, improving both biocompatibility and electrical conductance. 

Targeted delivery to cortical layers was facilitated via stereotaxic 

microsurgery in non-human primate models. 

4. Visual Cortex Stimulation and Feedback 

Stimulation was delivered as subthreshold or suprathreshold biphasic current 

pulses through the DNA-enhanced MEAs. Real-time VEPs were recorded 

via non-invasive scalp EEG and intracortical local field potentials (LFPs). 

Latency, amplitude, and waveform morphologies of VEPs were analyzed 

using machine learning models to iteratively optimize spatial–temporal 

stimulation patterns. 

5. Experimental Subjects and Ethical Protocol 

Experiments were performed on macaque monkeys rendered cortically blind 

via controlled retinal ablation. All protocols adhered to institutional 

guidelines and the NIH Guide for the Care and Use of Laboratory Animals. 

Blind human volunteers (n=3) with no light perception participated in non-

invasive VEP training trials under IRB approval. 

Results 

1. Visual Pattern Recognition and Cortical Encoding 

The AI vision module achieved 94.3% accuracy in object identification and 

88.7% in scene segmentation in real-time across urban and indoor test 

environments. Saliency-guided compression enabled encoding of complex 

visual scenes into 512 × 512 cortical stimulation matrices within 47 ms 

latency. 

2. DNA Origami–MEA Performance 

The DNA–graphene MEAs demonstrated a 2.6× increase in neural 

adherence and 3.2× lower impedance compared to conventional silicon-

based arrays. Interface longevity exceeded 6 months in vivo with minimal 

glial scarring. 
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3. VEP-Based Feedback Optimization 

Iterative AI updates using VEP-derived error correction enhanced the fidelity 

of visual perception over 5 sessions, with cortical pattern discrimination 

improving from 61.5% to 89.8%. In human volunteers, VEP response to 

motion-coded stimuli demonstrated reproducible P100 components, 

suggesting activation of motion-processing pathways. 

4. Subjective and Behavioral Outcomes 

Non-human primates demonstrated successful navigation of obstacle courses 

under visual cortex stimulation. In human tests, participants reported 

perception of geometric light patterns corresponding to object contours. No 

adverse neural responses or seizures were observed. 
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