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Abstract

Accurate detection of multiple sclerosis (MS) lesions in magnetic resonance imaging (MRI) requires robust deep learning
models to capture subtle spatial and textural features. We introduce hybrid quantum-classical transfer learning algorithms
for MS classification using axial and sagittal MRI scans, combining classical convolutional neural networks (CNNs)
including EfficientNetB3, ResNet50, DenseNet121 with parameterized quantum circuits to enhance feature representation
via entanglement and quantum-specific non-linearities. Quantum layers are trained end-to-end with classical backbones
via backpropagation, enabling seamless integration of quantum-enhanced features. For axial MRI, QResNet50 achieved
a high accuracy of 97.58% and AUC of 99.31%, while QDenseNet121 reached 97.28% accuracy and 99.13% AUC. For
sagittal MRI, classical ResNet50 excelled with 99.15% accuracy and 99.93% AUC, while QEfficientNetB3 improved
accuracy (97.46% to 98.30%) but reduced AUC (99.51% to 99.32%), and QDenseNet121 achieved 98.87% accuracy and
99.83% AUC. Hybrid models showed mixed results, with QCNN underperforming, suggesting quantum benefits are
architecture-dependent. Despite simulated quantum circuits mitigating hardware limitations, our results demonstrate the
potential to enhance diagnostic performance in specific architectures. This work clarifies a foundational step toward
quantum-enhanced deep learning for clinical applications, opening research directions in quantum- aware transfer learning
and error mitigation for biomedical imaging.
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1.Introduction

Quantum machine learning (QML), which lies at the intersection of quantum
computing and classical machine learning, has undergone significant
advancements in recent years due to the unique strengths of quantum
technology in enhancing data processing and model training [1]. However,
current hardware limitations, such as limited qubit counts and error rate,
continue to pose challenges for the full realization and scalability of quantum
models [2,3]. Quantum neural networks (QNNs), a key component of QML,
have demonstrated promising results across various domains by utilizing
quantum phenomena like superposition and entanglement to improve
learning performance. Among the various quantum neural network
architectures, Quantum Convolutional Neural Networks (QCNNs) have
emerged as a powerful hybrid quantum-classical approach [4]. QCNNs
utilize the potential of quantum computing inspired by classical
convolutional neural networks to reduce dimensionality and tackle complex
high-dimensional problems. This approach is especially valuable in
healthcare applications and medical diagnostics, particularly for the early
detection of Multiple Sclerosis (MS), where timely and accurate diagnosis is
critical.

Multiple Sclerosis is a chronic inflammatory disorder of the central nervous
system characterized by damage to the myelin sheath and nerve fibers [5].

The myelin sheath is a fatty-protein coating that insulates nerve cells in the
brain and spinal cord, enabling rapid transmission of electrical impulses [6].
Damage to this protective layer disrupts nerve signal conduction and leads
to the formation of scar tissue, known as plaques or sclerosis.

The number of people suffering from this disease is estimated to be
approximately 2-3 million worldwide [7]. Multiple sclerosis is more
commonly observed in young to middle-aged females, although this has not
always been the case [8]. The etiology of MS remains unclear, but it is widely
recognized as a multifactorial disease influenced by genetic and
environmental risk factors [9,10]. The pathology of MS is highly
heterogeneous, posing challenges in accurately diagnosing the disease in its
early stages, measuring progression, and evaluating treatment efficacy [8].
Its diagnosis remains difficult due to the absence of specific symptoms,
physical findings, or laboratory tests that can definitively confirm the
condition [11]. Consequently, physicians rely on a combination of diagnostic
methods, including thorough review of the patient's medical history,
neurological ~examinations, magnetic resonance imaging (MRI),
cerebrospinal fluid analysis, and blood tests [10], [12-15] to exclude other
conditions that present with similar symptoms. Among these, MRI
modalities are considered the most effective non-invasive tool for detecting
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MS lesions, providing crucial information about brain structure and tissue
abnormalities. MRI biomarker, such as lesion count, evolution over time, and
brain volume measurements (including grey matter and white matter) are
valuable indicators for disease prognosis and treatment response [16-19]. To
enhance diagnostic accuracy, boost efficiency, and minimize manual errors,
artificial intelligence (Al)-powered computer-aided diagnosis systems have
been integrated with conventional MRI technology.

Recent advancements in Al, particularly deep learning (DL) methods like
convolutional neural networks (CNNs), has significantly enhanced the
accuracy and efficiency of diagnosing MS through MRI data analysis
[20,21]. In a study, multiple sclerosis patients were categorized based on
their disability level using a deep learning model incorporating convolutional
neural networks [22]. The model outperformed traditional methods by
effectively extracting optimal MRI features. Attention-map analysis showed
the frontotemporal cortex and cerebellum play crucial roles in predicting
disability and also indicated that MS progression involves a complex
distribution of neural damage across the central nervous system. In another
study, a four-layer deep belief network was used to extract latent features
from normal-appearing white and gray matter image patches, selected via
voxel-wise t-tests and excluding lesion-overlapping areas [23]. These
features were then undergone LASSO-based selection to reduce overfitting
and are used to train a random forest classifier to distinguish multiple
sclerosis patients from healthy controls. The integration of multimodal
myelin and T1-weighted features enhanced classification accuracy compared
to single-modality approaches, highlighting the advantage of joint feature
learning in improving predictive performance.

To improve the accuracy of multiple sclerosis diagnosis using MRI scans, a
model was developed that integrates a multi-view ResNet architecture with
novel attention mechanisms-the View Space Attention Block (VSAB) and
View Channel Attention Block (VCAB)-to extract detailed features from 2D
brain images. Additionally, the Quantum RIME (QRIME) algorithm was
introduced, combining RIME with Quantum Behaved Particle Swarm
Optimization (QPSO) to perform efficient dimensionality reduction, thereby
enhancing both diagnostic accuracy and computational efficiency [24]. The
results showed the potential of Al applications in improving the early
detection of neurodegenerative diseases. In another study, disability
progression prediction in MS patients was investigated using a time-
dependent deep learning model based on sequential medical imaging data
[25]. The study captured temporal relationships across multiple MRI
timepoints and demonstrated that quantum models achieved competitive
performance compared to classical neural network architectures in binary
classification of MS disability.

In this study. we explored the application of classical and hybrid quantum-
classical deep learning models for the detection of MS lesions in axial and
sagittal brain MRI scans. Given the heterogeneous spatial distribution and
textural characteristics of MS lesions, the ability of these models to adapt to
such variability plays a crucial role in achieving reliable and robust
diagnostic performance. Leveraging transfer learning techniques with
architectures such as ResNet50, EfficientNetB3, and DenseNetl21, we
established a classical baseline before integrating parameterized quantum
circuits to form hybrid quantum-classical models. A comparative evaluation
across imaging planes revealed distinct performance trends, showing both
the promise and current limitations of quantum-enhanced deep learning in
the context of medical image analysis.

This study is systematically organized to investigate hybrid quantum-
classical approaches for MS detection. The Introduction highlights the
clinical importance of MS diagnosis and reviews the application of deep
learning methods in improving diagnostic accuracy using MRI data. The
Methods section provides a rigorous technical exposition of: (i) classical
CNN architectures (CNN, DenseNetl121, ResNet50, EfficientNetB3) and
their quantum hybrid variants, (ii) quantum circuit design principles
including amplitude/angle embedding strategies, and (iii) the experimental
framework encompassing data preprocessing and hyperparameter
optimization. The Results section presents a comprehensive performance
analysis across axial and sagittal MRI planes, with quantitative evaluation
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through accuracy, precision, recall, Fl-score, and AUC metrics. The
Discussion explains these findings within current literature, examines the
differences between quantum and classical performance, and addresses
practical implementation constraints. Finally, the Conclusion synthesizes
key insights regarding quantum-enhanced feature learning while outlining
future research directions in quantum medical imaging.

2 Theoretical Background
2.1 Quantum Computing

In this section, we provide a brief background and introduce fundamental
quantum computing concepts. These preliminaries will be used to describe
the QCNN algorithms in the following sections.

Quantum bit (qubit): A qubit is mathematically described as a vector in a
two-dimensional Hilbert space, with the computational basis states [0) and
|1) forming its foundation [26]. Unlike classical bits, qubits can exist in a
superposition state, meaning they can simultaneously represent a linear
combination of these basis states weighted by complex probability
amplitudes. This property enables quantum entanglement, where the states
of several qubits become connected so that the state of each qubit depends
on the others, no matter how far apart they are. When one qubit in an
entangled system is measured, its state collapses and immediately determines
the states of the others. These extraordinary features allow entangled qubits
to encode and process information in ways that far exceed the capabilities of
classical bits, giving quantum computers the potential to solve certain
complex problems much more efficiently than traditional computers.

Quantum gates: Quantum gates are mathematical operations that act on one
or more qubits to change their quantum states [27]. The most commonly used
gates include the Hadamard, CNOT, Rotation, and Pauli gates. The
Hadamard gate creates superposition by transforming a qubit from a definite
state into a combination of |0) and |1) states, while the CNOT gate as a two-
qubit gate generates entanglement between qubits. Rotation gates perform
parameterized rotations around the X. Y. or Z axes of the Bloch sphere, and
Pauli gates (X. Y. and Z) are used for controlled bit and phase flips.

Quantum circuits: Quantum circuits consist of sequences of quantum gates
arranged according to quantum algorithms to manipulate qubits [28]. These
circuits generate superposition and entanglement, which serve as
fundamental resources for quantum computation. Quantum gates and circuits
form the foundational elements in designing quantum computing models.
Within a quantum circuit, measurement gates convert quantum states into
classical information by collapsing them. Typically, several measurements
are conducted, and their results are aggregated to estimate observable values
and make predictions [29].

2.2 Quantum neural network (QNN)

A quantum neural network in contrast to a classical convolutional neural
network, consists of quantum layers that typically include three main
components: embedding (data encoding), quantum circuits (often variational
circuits with parameterized gates and entanglement), and measurement [30].
Initially, classical data is encoded into a quantum state via a state preparation
routine or feature map, which is usually designed to enhance model
performance [31]. Following encoding, a variational quantum circuit with
parameterized gates is applied and optimized for a specific task through loss
function minimization [32]. The output of the quantum model is then
obtained by measuring the quantum state and applying classical post-
processing to the measurement outcomes. This framework allows QNNs to
leverage quantum phenomena to potentially improve computational
efficiency and representational capacity compared to classical neural
networks.

2.3 Quantum Encoding

Quantum machine learning relies on embedding classical data into quantum
states using quantum principles [33]. This process involves mapping data
vectors into parameters that define quantum circuits, thereby generating
quantum feature representations in Hilbert space. Two common encoding
methods are amplitude encoding and angle encoding.
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Amplitude encoding: In amplitude encoding, classical data is embedded into
the probability amplitudes of a quantum state. By exploiting quantum
superposition, the encoded information is accessed by measuring the
quantum state’s amplitudes [34]. A key advantage is its efficiency in
representing large datasets using relatively few qubits. Specifically,
encoding a classical dataset with M data points and N features per point
requires n=log2(NM) qubits.

To perform amplitude encoding, classical data vectors x = (x1. x2. ... . xN)
are mapped to quantum states as:
N-1
1
Wy= > xili)
[l
i=1

where |i) denotes the computational basis states and xi represents the i -th
component of the classical data. The quantum system is initially prepared in
the all-zero state |0)@n. Where n is the number of qubits determined by the
dataset size. A sequence of unitary operations, such as rotations and
controlled gates, is then applied to transform this initial state into the desired
encoded quantum state.

Angle encoding: Angle encoding embeds classical data into quantum states
via parameterized rotations around the X. Y. or Z axes, with angles
corresponding to data values. For example, a classical data vector x = (x1.
x2. ... . xN) can be encoded using rotations around the Y-axis as: |y(x)) =

Ry(x1) ® Ry(x2) @ ... @ Ry(xn)|0)®n

Angle encoding maps each feature to the rotation angle of a single qubit,
requiring one qubit per feature. This method uses relatively fewer quantum
gates, enhancing its compatibility with existing quantum hardware.
Generally, encoding a dataset with n features requires exactly n qubits.

For datasets with a large number of features, amplitude encoding requires
fewer qubits per data point but demands a higher number of quantum gates
to prepare the corresponding quantum state. In contrast, angle encoding is
simpler and more resilient to noise on current quantum devices, making it
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more practical given existing hardware limitations. However, angle encoding
is less efficient when handling high-dimensional data. Each method offers
distinct advantages and trade-offs, where the choice between amplitude and
angle encoding depends on the available quantum hardware capabilities and
the specific requirements of the machine learning task [35].

2.4 Circuit Design

The circuit design defines the sequence and types of quantum gates applied
to the qubits after data encoding [36]. Typically, this involves a combination
of parameterized rotation gates and entangling gates applied to neighboring
qubits. Entangling gates create quantum correlations across adjacent qubits,
enabling the circuit to exploit quantum phenomena such as superposition and
interference. This enhanced representational power enables quantum
convolutional layers to capture more complex features from imaging data.
During training, the parameters of the rotation gates are optimized to
minimize a loss function, tailoring the quantum circuit to the specific
learning task.

2.5 Measurement and Output Features

After processing through the quantum convolutional layer, measurements
are performed on the qubits to extract expectation values of specific
observables. These quantum-derived features constitute the output of the
quantum layer and can be fed into subsequent layers- either quantum or
classical-enabling hybrid quantum-classical architectures.

3. Methods
3.1 Dataset details and preprocessing

We utilized a dataset comprising 1441 axial and 2016 sagittal FLAIR MRI
brain images exhibiting visible MS lesions, alongside 2016 axial and sagittal
image slices depicting normal brain appearance without white matter lesions
[37]. The images prospectively collected from 72 patients diagnosed with
MS and 59 healthy control subjects. Fig. 1 presents ten representative
samples, with randomly selected axial images from the MS and healthy
groups shown in Fig. 1a and Fig. 1b, respectively, and sagittal images from
the MS and healthy groups displayed in Fig. 1¢ and Fig. 1d, respectively.

Figure 1: Representative MRI samples from MS and healthy groups. Randomly selected axial images from (a) MS and (b) healthy groups;
Randomly selected sagittal images from (c) MS and (d) healthy groups.

We divided the dataset into training, validation, and test subsets to ensure
robust model evaluation. Initially, the entire dataset was split into a combined
training-validation set and a separate test set, with 20% of the data reserved
for testing. This division employed stratified sampling to preserve the
original class distribution across the subsets, thereby preventing class
imbalance issues [38]. Subsequently, the combined training-validation set
was further split into distinct training and validation subsets, allocating 20%

of the data for validation. Both splitting steps were conducted using a fixed
random seed to ensure reproducibility of the data partitions.

For training data, augmentation was performed using Kornia, a PyTorch-
based computer vision library [39]. Figure. 2a and Figure. 2b depict the size
of the training image data before augmentation for axial and sagittal images,
respectively, while Figure. 2c illustrates the size of the training image data
following augmentation.
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Figure 2: Training image dataset sizes before and after augmentation. (a) Number of axial training images before augmentation. (b) Number of
sagittal training images before augmentation. (c) Number of training images after augmentation.

To standardize input dimensions for the mode, all images were resized to
224 x 224 pixels. We normalized pixel intensities to the [0.1] range by
dividing by the maximum 8-bit value (255), ensuring consistent input scaling
throughout the dataset.

3.2 Classical deep learning algorithms
3.2.1 Convolutional neural network

Among DL models. convolutional neural networks are particularly
prominent and widely applied in tasks such as object detection, speech
recognition, image classification, and biomarker detection [40,41]. CNNs
employ multi-layered architectures to learn hierarchical data representations,
where each layer extracts increasingly complex features [42]. This structure
integrates feature extraction and classification into a single efficient
framework that requires minimal preprocessing. As a result, CNNs can
automatically learn and identify patterns directly from raw data without
manual intervention. The core components of CNNs include convolutional
layers, activation functions, pooling layers, and fully connected layers [41].

Convolutional layers: These layers extract distinctive features from input
data through multiple convolution operations using learnable kernels [43].
This process preserves spatial structure while reducing parameters through
local connectivity and parameter sharing, enabling hierarchical feature
learning. The output of a convolutional layer is a set of feature maps that
highlight specific patterns in the data.

Activation functions: These functions are applied directly to the output of
convolutional layers to introduce non-linearity into the model [44]. This non-
linearity allows CNNs to capture and represent complex, non-linear
relationships within data. It enables the network to solve tasks beyond simple
linear classification or regression and to effectively model intricate real-
world patterns. Common activation functions include the Rectified Linear
Unit (ReLU), sigmoid, and hyperbolic tangent (tanh).

Pooling layers: These layers usually follow convolutional and activation
layers and reduce the number of network connections by down sampling and
reducing the dimensionality of the input data [45]. This reduction in data size
lowers computational demands and aids in minimizing overfitting.

Fully connected (FC) layer: The FC layer is typically positioned at the end
of'a CNN to connect every neuron to all neurons in the preceding layer [46].
It receives input from the last convolutional or pooling layer and acts as a
classifier to enable the network to make predictions.

In this study, we implement a classical CNN architecture composed of a
fixed convolutional base followed by a configurable dense classifier. The
convolutional base includes two blocks: each consists of a Conv2d layer with
ReLU activation and max pooling. Specifically, the first block applies 32
filters of size 3x3 with unit padding to the input, followed by ReLU and 2x2
max pooling with stride 2. The second block increases the number of filters
to 64 while maintaining the same kernel and padding configuration. After
feature extraction, spatial dimensions are flattened into a vector whose size
is determined dynamically during initialization via a dummy forward pass.

The classifier module is then constructed based on this inferred input size
and consists of a variable number of fully connected layers, each followed
by ReLU activation and dropout regularization. The final dense layer outputs
logits for two classes. Formally, given an input tensor XER3xBxHxW, the
network computes:

y= Linearou: (Dropout (ReLU (Lineardprev—dunits (... (Dropout (ReLU
(Lineardprevadunits (xflat)))))

where xfiat is the resulting flattened feature vector with shape B x din. B
represents the batch size (number of input samples processed together), din
denotes the flattened feature dimension output by the convolutional base.
dprev and dunits represent the input and output dimensions of each linear
transformation, respectively.

This modular design supports flexible experimentation with network depth
and regularization strength while maintaining a simple and interpretable
baseline CNN structure.

3.2.2 DenseNet121 Architecture

Dense Net (Densely Connected Convolutional Network) is a convolutional
neural network architecture designed to improve feature reuse and gradient
flow by establishing direct connections between all layers within a dense
block [47]. DenseNetl21, a 121-layer variant, achieves high parameter
efficiency and strong performance in image classification tasks, making it
well-suitable for medical imaging applications [48]. Unlike traditional
CNNs, where layers receive input only from the immediately preceding
layer, DenseNet121 connects each layer to every preceding layer in the same
dense block by concatenating their feature maps. Formally, the output of
layer € is defined as:

xl=HIl([x0.x1. ... .xI-1])
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Were, [x0. x1. ... . xI—1] denotes the concatenation of feature maps from all
previous layers, and H{ is a composite function comprising batch
normalization (BN), ReLU activation, and a 3x3 convolution (Conv3x3). To
improve computational efficiency, a 1x1 convolution (bottleneck layer.
Convlx1) precedes Hl to reduce channel dimensionality and to improve
computational efficiency:

Hl = Convsx3 (ReLU (BN (Convix1([x0. x1. ... . xI-1])))).

Each layer in a dense block produces k feature maps, where k is the growth
rate (commonly 32), resulting an output channel count after [ layers:

Cout=Cin+k x1

In our implementation, we used the pretrained DenseNet121 backbone from
torchvision, modified to freeze the initial stem layer and the first dense block
to prevent overfitting on small datasets. The final classifier layer is replaced
with a configurable stack of FC layers, including ReLU activations and
dropout regularization. Specifically:

e  The output of the DenseNet121 backbone is passed through an
adaptive average pooling layer, reducing spatial dimensions to
Ix1.

e  The resulting tensor is flattened into a 1024-dimensional feature
vector.

e A variable number of FC layers follow, each with configurable
width and dropout rate.

e  The final linear layer outputs logits for two classes.

3.2.3 ResNet50 Architecture

Residual Networks (ResNet) address the vanishing gradient problem by
introducing residual connections that facilitate the training of deeper
convolutional neural networks [49]. These skip connections allow gradients
to flow more directly through the network, simplifying optimization and
improving learning stability. While residual connections help mitigate
vanishing gradients, batch normalization and ReLU activation also play
critical roles in ensuring stable and efficient training.

ResNet50, a 50-layer variant, achieves strong performance in image
classification and is widely adopted in various applications due to its balance
between accuracy and computational efficiency [50]. The architecture begins
with a stem comprising a 7x7 convolution, batch normalization, ReLU
activation, and a 3x3 max-pooling layer, which transforms input images into
feature maps of size 64 channels. This is followed by four stages of residual
bottleneck blocks. Each block expands, transforms, and reduces channel
dimensions using three convolutional layers: two 1x1 convolutions and one
3%3 convolution:

Xout = x + Convreduce (ReLU (BN (Convsxs (ReLU (BN
(Convexpand(x)))))))

1x11x1

Where, Convexpand expands channels, Conv applies a 3x3 convolution, and
Convreduce

reduces channels to the output dimension Cout. A skip connection adds the
input x to the output. with a 1x1 convolution applied to x if channel
dimensions differ. For an input of size 224x224, the final stage of four
outputs features maps of size 7x7x%2048, which are spatially reduced via an
adaptive average pooling layer to a 2048-dimensional vector:

Xpooled = AdaptiveAvgPoolix1(x)

The classifier consists of a configurable stack of fully connected layers, each
with ReLU activation and dropout, culminating in a final linear layer that
produces class logits:
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y = Linearc,,; (Dropout (ReLU (Linearq

(Flatten(xpooted))))))

Where, Flatten converts the pooled features into a vector of size 2048 [S1].
To leverage transfer learning, we initialize the ResNet50 backbone using
pretrained weights from a specified path. The stem and the first residual
stage— including the initial convolution, batch normalization, activation,
max pooling, and first residual block — were frozen to preserve low-level
features learned on large-scale datasets. Later layers and the newly defined
dense classifier were fine-tuned during training.

3.2.4 EfficientNet-B3 Architecture

units (o

Efficient Net is a family of convolutional neural networks that optimize
accuracy and efficiency by uniformly scaling network depth, width, and
input resolution using a compound scaling factor [52,53]. EfficientNet-B3, a
mid-sized variant, balances computational cost and performance, making it
suitable for image classification tasks. The architecture is composed of a
stem layer followed by a sequence of mobile inverted bottleneck convolution
(MBConv) blocks augmented with squeeze-and-excitation (SE) modules
[54]. Each MBConv block processes input feature maps x€ERHxWxCin
through the following operations:

x = Conveduee ‘Swish (BN (SE (Conviderthwise (Swish (BN (Converrand(x)))))))
our 1x1 kxk 1x1 I

h )

Here, Convexpand1x1 increases channel dimensionality, Convdepthwise
kxk applies a depth wise convolution, and Convreduce reduces channels.
A residual skip connection adds the input x to the output when their
dimensions’ match. The SE feature maps via global average pooling and two
fully connected layers:

SE(x) = x - 0 (FC2 (Swish (FC1(Global Avg Pool(x)))))

Where, Global Avg Pool reduces spatial dimensions. FC1 and FC2 are fully
connected layers and o is the sigmoid function.

The EfficientNet-B3 backbone outputs feature maps of size 1536 channels
for standard 224x224 RGB inputs. These feature maps are spatially reduced
via global average pooling, resulting in a 1536-dimensional feature vector.
The final classifier includes a configurable stack of FC layers with ReLU
activation and dropout regularization, culminating in a linear output layer
producing class logits:

y = Linearc,,,, (Dropout (ReLU (Lineara,, ;. (...(Flatten(x))))))

Where, flatten reshapes pooled features into a vector of size 1536.

To leverage transfer learning, we initialized the EfficientNet-B3 backbone
using pretrained weights. Early layers—including the stem and initial
MBConv blocks (up to block 4)—were frozen to retain pretrained features
and reduced overfitting on small datasets. Later layers and the newly defined
dense classifier were fine-tuned during training.

3.3 Hybrid classical-quantum model

In this study, we introduced hybrid classical-quantum models including
QCNN, QDenseNetl121, QResNet50, and QEfficientNet-B3 that integrate
classical convolutional feature extraction with a variational quantum circuit
to construct a quantum-enhanced classifier. The architecture is composed of
three main components: (i) a classical convolutional base for spatial feature
learning, (ii) a dimensionality reduction layer that maps classical features
into a quantum-compatible latent space, and (iii) a parametrized quantum
circuit followed by a flexible dense classifier. Figure. 3 shows the schematic
flowchart of hybrid classical-quantum models architectures that are
explained in further sections. Overall details of each architecture are also
shown in Figure. 4.
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3.3.1 QCNN Architecture

The QCNN model begins with a standard convolutional neural network
comprising two blocks of Conv2d-ReLU-MaxPool operations. Each
convolutional layer preserves spatial resolution through unit padding while
increasing channel depth, followed by 2x2 max pooling that reduces spatial
dimensions. This feature extraction stage ensures that the model captures
hierarchical spatial patterns before transitioning to quantum processing. The
output is then flattened and projected via a linear layer into a latent vector of
size nqubits, matching the number of qubits in the subsequent quantum layer.

The quantum component is implemented as a parameterized quantum circuit
executed on a simulated device using PennyLane (55). Each qubit undergoes
an RX rotation based on the corresponding classical input, followed by
multiple layers of entangling CNOT gates and trainable Z-axis rotations.
Expectation values of Pauli-Z observables across all qubits are returned as
the final measurement and fed into a configurable stack of dense layers.
These dense layers consist of fully connected layers, each followed by ReLU
activation and dropout regularization, except the final output layer which
maps to 2 class logits.

The model processes input images through the following stages:
1. Convolutional Feature Extraction:
Xfeat = ConvNet(x)

Where, ConvNet consists of two Conv2d-ReLU-MaxPool blocks, reducing
spatial dimensions.

2. Flattening and Dimensionality Reduction:
Xflat = Flatten(xfeat)

Xiatent = Lineard (2« £l at)

in>n
Xencoded = 9 (Xlatent)

Where, ¢ denotes the sigmoid function, ensuring inputs fall within the valid
range for quantum encoding and xlatent is obtained through a linear
transformation projects the high- dimensional flattened features into a lower-
dimensional space with size matching the number of qubits in the quantum
circuit

3.Quantum Circuit Layer:

The encoded vector Xencoded is fed into a variational quantum circuit. Each
batch element is processed independently on a simulated quantum device
with nq qubits. The circuit performs input encoding:

| \|IL> =RX (Xencaded [ l]) | 0)

followed by entangling CNOT gates and RZ rotations across layers. Final
measurements are taken as:

xq = [{Zo). ....(an — 1)
4. Final Classification:
y = Classifier (xq)

The classifier consists of a customizable sequence of fully connected layers,
each followed by ReLU activation and dropout regularization, ending with a
final linear layer that outputs the class logits.

3.3.2 QDensenet121/QResNet50 Architecture
1.Classical Feature Extraction

The backbone of QDenseNet121 or QResNet50 extract high-level feature
vectors z € R 1024 and z€ R 2048, respectively, via adaptive average pooling
of convolutional feature maps. These vectors are further processed by ndense
fully connected layers with ReLU activations and dropout regularization:

hi+1 = Dropoutpdrop (ReLU (Wihi + bi)). i = 1.....Ndense — 1
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where h0 = z. Wi € Rudense x uin. bi € Rudense. uinis the input
dimension for the first dense layer, and udense is the number of units in
each classical dense layer, thereafter. The final dense layer projects to a
vector of size 2ngubits:

q=m-0 (thndense + bq)
Where, ¢ is the sigmoid function, ensuring the quantum circuit input
parameters lie within [0, ], Wq and bq are weight matrix and bias vector

projecting the final dense layer output to the quantum circuit input size
2ngubits.

2. Quantum Circuit Encoding and Variational Layers

The vector q is normalized and encoded into a quantum state via amplitude
embedding on an nqubits-qubit system:

q

o) = 1

Here, | y0) € C2 is a normalized quantum state.

The variational quantum circuit consists of nlayers layers, each applying
parameterized single-qubit URot (6k.j.0. 0k.j.1. 6k.j.2) = Rz(6k.j.2).
Ry(6k.j.1). Rz(6k.j.0) rotations on qubit j, followed by entangling CNOT
gates between adjacent qubits:

CNOTj. j+1 =] 00 [j® Ij+1 + 1)(1 j® Xj+1

in which, I denotes identiy matrix and X indicates X rotation. The output is
a vector of expectation values:

g € = (0% . (a") + (g9) . (g™ )]

Where, 6j x and oj z are Pauli operators.
3. Classical Post-Processing and Classification

The quantum output e is fed into a classical classifier comprising two fully
connected layers with ReLU activation and dropout:

f1 = Dropoutpdrop+o.1(ReLU (Wie + bi))
y=W2f1+b2

Where Wi € Rudense x w;, b; € Rudense, W, € *>uclassical y € R2 represents
binary class logits.

3.3.3 QEfficientNetB3-quantum architecture
1.Classical Feature Processing

The EfficientNet-B3 backbone extracts a feature vector zER1536 via global
average pooling of its final convolutional output. This vector is processed
through fully connected layers with ReLU activation and dropout
regularization:

hi+1 = Dropoutpdarop (ReLU (Wihi + by))

fori=1.....ndense—1, h0 =z, Wi € Rudense x uin, bi € Rudense, and
uin = 1536 for the first layer and udense (subsequent layers). The final layer
projects to nqubits dimensions (one feature per qubit) and scales to [0, «t]
via a sigmoid:

q=T.C (thndense + bq)
ensuring rotation angles € [0. ] for quantum encoding.
2. Quantum Circuit Design

The circuit employs angle embedding to map classical features to qubit
rotations, reducing computational overhead compared to amplitude
embedding:

ngubit—1
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3. Variational Quantum Layers
The circuit applies nlayers layers of trainable rotations and entangling gates:

Rotational Gates: Each layer k applies Rx. Ry. Rz rotations parameterized by
weights Okj.m:

Urot(Bk. j) = Rx(Okj2) RY(Okj.1) RX(Bk.j.o)
Where, j indexes qubits and m indexes rotation axes.

Entanglement: CNOT gates create a ring topology (qubit j entangled with
(j+1) mod nqubits):

M gubite —

1
Usne = i=0 CNOTJ‘-KJ“"‘U mod figybits

4. Measurement and Classical Classifier
The circuit measures Pauli-Z expectations on all qubits:
e = [{o9). ..o 9Py ¢ pugubits
z z
A classical fully connected network processes e to produce logits:
y = W2 (Dropoutpdrop+o.1(ReLU (W1le + b1))) + b2
Where, WagR2~delassical,
3.3.4 Optimization

The hybrid quantum-classical models were trained using a combination of
cross-entropy loss and L2 regularization to prevent overfitting and improve
generalization:
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Where ti € {0.1}? is the true label, yi = softmax(yi) is the predicted
probability, and ||W|[ris the Frobenius norm of weight matrices, using
learning rate 7).

To further enhance training efficiency and avoid overfitting, we
implemented an early stopping mechanism that monitors validation loss
during training. This ensures optimal use of computational resources while
retaining the most effective model state observed throughout training.
Hyperparameter tuning was carried out using Optuna, a powerful framework
for automated hyperparameter optimization [56]. Over 50 trials were
executed across a predefined search space encompassing both classical and
quantum parameters. For each trial, Optuna evaluated model performance
based on validation metrics, iteratively refining its search strategy to identify
the most promising configurations. The final optimal set of hyperparameters
was selected based on overall performance across training, validation, and
test sets. All experiments were conducted on the Leonardo supercomputer,
part of the European high-performance computing infrastructure hosted by
the CINECA interuniversity consortium [57]. We utilized the
“boost_usr_prod” SLURM partition, which provides access to NVIDIA
A100 GPUs through the Leonardo Booster environment for accelerated deep
learning computations. Additionally, a subset of algorithms was tested using
an NVIDIA A100 GPU from a paid Google Colab Pro account to ensure
development flexibility and reproducibility across environments.

4 Results

The performance metrics highlight the potential of hybrid classical-quantum
models for enhancing MS detection, particularly in capturing complex lesion
patterns. The optimized hyperparameters for each method are detailed in
Table 1. Improvements in AUC, a critical metric for distinguishing MS
lesions from normal tissue, were observed in QDenseNet121 and QResNet50
for axial MRI, suggesting quantum layers can enhance discriminative power
in certain architectures. However, inconsistent benefits across models
indicate that quantum integration is context-specific, influenced by classical
model complexity and quantum circuit design. Performance declines in

L v , QCNN and QEfficientNetB3 further reveal the need for careful architectural
L=—py S teelog(ee) + Az ZIIWII design to maximize quantum contributions.
i=1 ¢=0 w
Method MRI_ Axial MRI_ Sagittal
CNN Batch size = 16 batch size = 32 dense
dense units=240 units=240 dense
dense layers=2 layers=2 dropout =
dropout = 0.451 0.464
12_lambda = 0.0004 12_lambda = 0.0003 learning
learning rate = 0.00013 rate = 0.000057
DenseNet121 batch size = 32 batch size = 32 dense
dense units=96 units=136 dense
dense layers=1 layers=2 dropout =
dropout = 0.401 0.400
12 lambda = 0.00095 12_lambda = 0.0065
learning rate = 0.00052 learning rate = 0.00059
IResNet50 batch size = 16 dense batch size = 16 dense

units=188 dense
layers=2 dropout =
0.454
12 _lambda = 0.0002
learning rate =0.00009

units=126 dense
layers=1 dropout =
0.462
12 _lambda = 0.0001
learning rate = 0.00053

EfficientNet-B3

batch size = 64 dense
units =211

dense layers = 1
dropout = 0.455

12_lambda = 0.0042
learning rate = 0.00099

batch size = 32 dense
units = 70

dense layers=2 dropout
=0.476

12_lambda = 0.00035
learning rate = 0.00072

QCNN

batch size = 32 dense
units=86 dense layers=2
dropout = 0.453

12_lambda = 0.00069
learning rate = 0.00018 #

batch size = 32 dense
units=253 dense
layers=2 dropout =
0.406

12 lambda = 0.00014
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units=196 dense layers=1

dropout = 0.432
12_lambda = 0.00085

learning rate = 0.00036 #

qubits =3 learning rate = 0.00014 #
# layers = 8 qubits =3
# layers = 8
batch size = 16 dense batch size = 32 dense
QDenseNet121 units=181 dense layers=1 units = 251 dense layers
dropout = 0.443 =1 dropouts = 0.471
12_lambda = 0.0024 12_lambda = 0.00199
learning rate = 0.00045 # learning rate = 0.00095 #
qubits =3 qubits =4
# layers =9 # layers =3
QResNet50 batch size = 16 dense batch size = 32 dense

units = 180 dense layers
=1

learning rate = 0.00041
dropout = 0.463

qubits =5 12_lambda = 0.00039 #
# layers =11 qubits =3
# layers = 10

QEfficientNet-B3

batch size = 32 dense
units = 92 dense layers =
2 dropouts = 0.406

12_lambda = 0.00016
learning rate = 0.00006 #
qubits =2

# layers = 11

batch size = 16 dense
units =251 dense layers
=1 dropouts = 0.404

12_lambda = 0.00088
learning rate = 0.00048 #
qubits =2

# layers =4

Table 1: The optimized hyperparameters for each method.

4.1 Evaluation of Classic and Hybrid Classic-Quantum DL Models for
Axial MRI

The metrics including accuracy, precision, recall, F1-score, and AUC offer

axial MRI images (Table 2). The results reveal both the strengths of classic
DL models and the potential of quantum- enhanced approaches with
implications for advancing MS diagnostics.

insights into the models’ effectiveness in identifying MS-related features in
Classic Hybrid Classic-Quantum
DL Models |Accuracy [Precision [Recall F1-score AUC |Accuracy |Precision  |Recall IF1-score |AUC
CNN 93.95% 93.95% 93.95% 93.94% 97.81% 93.05%  [93.06% 93.05% 93.05%  [96.85%
DenseNet121 95.77% 95.77% 95.77% 95.77% 98.86% 97.28%  [97.28% 97.28% 97.28%  199.13%
EfficientNetB3  98.18% 98.20% 98.18% 98.18% 99.02% 98.18%  [98.20% 98.18% 98.18%  [98.14%
ResNet50 96.97% 97.01% 96.97% 96.96% 98.69% 97.58%  197.62% 97.58% 97.57%  199.31%

Table 2: Performance metrics of classic and hybrid classic-quantum algorithms for axial MRI images.

Among the classic DL models, EfficientNetB3 achieved the highest
performance, with an accuracy of 98.18%, precision of 98.20%, recall of
98.18%, F1-score of 98.18%, and an AUC of 99.02%. This performance is
likely due to EfficientNetB3’s compound scaling approach, which optimizes
network architecture to capture the subtle and heterogeneous patterns of MS
lesions. ResNet50 and DenseNetl21 also performed robustly, with
accuracies of 96.97% and 95.77%, respectively, and AUC values above 98%,
indicating strong discriminative ability for MS-related features. In contrast,
the CNN model showed the lowest performance (accuracy of 93.95%. AUC
of 97.81%), suggesting that simpler architectures may struggle to model the
complex characteristics of MS lesions.

The hybrid classic-quantum models demonstrate varied performance relative
to their classic counterparts. Notably, QDenseNet121 showed a significant
improvement, with an accuracy increasing from 95.77% to 97.28% and AUC
from 98.66% to 99.13%. Similarly, QResNet50 improved accuracy versus
classical counterpart (from 96.97% to 97.58%) and AUC (from 98.69% to
99.31%), indicating that quantum circuits may enhance the model’s ability
to capture residual features critical for identifying MS-specific patterns.

However, the QCNN model exhibited a slight performance decline (accuracy
drops from 93.95% to 93.05%. AUC from 97.81% to 96.85%), possibly due
to the limited capacity of the CNN architecture to leverage quantum
enhancements effectively. Intriguingly, EfficientNetB3’s hybrid model
shows no improvement in accuracy (98.18%) and a slight AUC decrease
(from 99.02% to 98.14%), suggesting that its highly optimized classic
architecture may already be near the performance, leaving little room for
quantum contributions.

4.2 Evaluation of Classic and Hybrid Classic-Quantum DL Models for
Sagittal MRI

For sagittal MRI images, the classic DL models demonstrated exceptional
performance, with ResNet50 achieving the highest metrics accuracy,
precision, recall, and F1-score all at 99.15%, and an AUC of 99.93% (Table
3). This performance likely reflects ResNet50’s ability to capture deep
residual features, which are critical for identifying MS lesions in the sagittal
plane, where lesions may appear as irregularly shaped hyperintensities,
particularly in the spinal cord or periventricular regions.

Classic Hybrid Classic-Quantum
DL Models Accuracy |Precision |Recall Fl-score |AUC Accuracy |Precision  |Recall F1- score |AUC
QCNN 93.80%  193.80% 93.80% [93.80% 98.31% 92.95% 93.12% 92.95% 92.97% 97.82%
QDenseNet121 98.87%  198.89% 98.87% 198.87%  199.83% 98.30% 98.35% 98.30% 98.30% 99.88%
QEfficientNetB3 97.46%  197.52% 97.46% 197.45% 199.51% 98.30% 98.35% 98.30% 98.30% 99.32%
QResNet50 99.15%  199.15% 99.15%  199.15%  199.93% 98.59% 98.60% 98.59% 98.58% 99.61%

Table 3: Performance metrics of classic and hybrid classic- quantum algorithms for sagittal MRI images.
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DenseNet121 has the next position, with an accuracy of 98.87%, precision
of 98.89%, recall of 98.87%, F1-score of 98.87%, and an AUC of 99.83%,
demonstrating its strength in leveraging dense connectivity to model
complex lesion patterns. EfficientNetB3, while still highly effective, showed
slightly lower performance (accuracy of 97.46% and AUC of 99.51%),
possibly due to its scaling strategy being less optimized for the specific
spatial characteristics of sagittal images. The CNN model lags behind, with
an accuracy of 93.80% and an AUC of 98.31%, indicating that simpler
architectures struggle to capture the nuanced features of MS lesions in this
plane.

The hybrid classic-quantum models showed mixed results compared to their
classic counterparts. QDenseNet121 model slightly underperformed, with
accuracy decreasing from 98.87% to 98.30% and AUC slightly increasing
from 99.83% to 99.88%. This suggests that quantum enhancements may not
significantly improve DenseNet121’s already strong performance. However,
the AUC of QDenseNet121 (99.83%) was slightly better than classical
counterpart (99.88%), indicating potential for better discriminative power.
QEfficientNetB3 model showed a notable improvement in accuracy (from
97.46% to 98.30%) but a slight AUC decrease (from 99.51% to 99.32%)),
suggesting that quantum layers enhance overall classification, but may
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slightly reduce the model’s ability to rank positive cases. QResNet50
exhibited a performance decrease across all metrics (accuracy from 99.15%
to 98.59% and AUC from 99.93% to 99.61%), indicating that quantum
integration may disrupt the models finally tuned residual learning for sagittal
images. The QCNN model also performed worse (accuracy drops from
93.80% to 92.95% and AUC from 98.31% to 97.82%), reinforcing that
simpler architectures may not benefit from quantum enhancements, possibly
due to limited quantum circuit complexity.

5 Discussion

In this study, we investigated the detection of multiple sclerosis lesions in
axial and sagittal MRI scans using classical and hybrid quantum-classical
deep learning models. Given the diverse spatial and textural patterns of MS
lesions, the adaptability of these models to such variations is critical for
accurate diagnosis. Our comparative analysis reveals distinct performance
trends across architectures and imaging planes, highlighting the potential and
limitations of quantum-enhanced DL in medical imaging.

Recent advances in deep learning have significantly improved the
classification of MS using MRI data, with numerous studies reporting high-
performance metrics (Table 4).

Method Dataset Performance Metrics Ref
(%)
MS: Axial
1411 MRI from 72 patients Accuracy: 98.37 Macin et al.
ExMPLPQ Healthy: Sensitivity: 96.46 (37)
2016 MRI from 59 subjects
Specificity: 99.60 Sagittal
Accuracy: 97.75
Sensitivity: 95.01
Specificity: 99.80
MS
706 MRI from 128 patients Accuracy: 97.13
Myelitis Precision:97.23 Recall:97.22  [Tatli et al. (58)
MSNet 667 MRI from 131 patients F1-score:97.23
Healthy
1373 MRI from 150 subjects
Six-layer CNN  |MS Accuracy: 95.82
alongside 676 MRI from 28 patients Sensitivity: 95.98
stochastic Healthy Specificity: 95.67 Wang et al. (20)
pooling. 681 MRI from Precision: 95.66
26 subjects F1-Score: 95.81
CNN MS Accuracy: 98.92
featuring wavelet (676 MRI from 38 patients Sensitivity: 99.20
pooling. Healthy Specificity: 98.33 IAli jamaat et al.
615 MRI from Precision: 99.20 (21)
20 subjects
DSI1:
MS
1411 MRI from 72 patients
Healthy
2016 MRI from 59 subjects
DS2:
MS
1263 MRI from 60 patients mAP (mean Average
D-CNN Healthy Precision) values: 86.20,
model inception {2016 MRI from 59 subjects 93.77,94.18, and 90.46 Haggag et al.
V3 DS3: for DS1. DS2. DS3. and DS4  ((59)
MS
1581 MRI from 20 patients
Healthy
2016 MRI from 59 subjects
DS4:
MS
1805 MRI from 38 patients
Healthy
2016 MRI from 59 subjects
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MS Axial: Accuracy: 99.76
Exemplar 1411 MRI from 144 patients Sagittal: Accuracy: 99.48 Ekmekyapar and
MobileNetv2. Healthy Tasci (60)
IMrMr. kNN 2016 MRI from 106 subjects

Table 4: Comparative overview of previous studies.

Macin et al. achieved an accuracy exceeding 98.37% for axial and 97.75%
for sagittal MRI images using EXMPLPQ, a method that integrates exemplar-
based multi-parametric Local Phase Quantization (LPQ) features with a k-
nearest neighbors (kNN) classifier [37]. This method affirmed the enduring
effectiveness of handcrafted feature extraction in MS diagnosis. In another
study, Tatli et al. developed MSNet, a hybrid MS classification model that
innovatively merges deep learning (DenseNet201 and ResNet50) with
feature engineering (NCA, ReliefF, and Chi2) and ensemble learning
(SVM/KNN + majority voting) [58]. By extracting and refining deep features
through transfer learning and iterative voting, the model achieved 97.13%
accuracy, demonstrating the advantages of combining deep neural networks
with classical machine learning techniques for medical image analysis.
Further improvements were observed in studies utilizing CNNs with
innovative pooling strategies, such as Wang et al. [20] and Alijamaat et al.

[21], who reported accuracies of 95.82% and 98.92%, respectively,
reinforcing the effectiveness of convolutional architectures in MS
classification. Haggag et al. employed a D-CNN model based on Inception
V3 across four datasets containing MRI scans from MS patients and healthy
controls, achieving mean average precision (mAP) values of 86.20%,
93.77%, 94.18%, and 90.46% for various datasets [59]. Meanwhile.
Ekmekyapar and Tasci utilized a hybrid approach combining Exemplar
MobileNetv2 with IMrMr feature selection and kNN, attaining accuracy
99.76% on axial images and 99.48% on sagittal images [60].

In our study, EfficientNetB3 achieved the highest performance among
classical models for axial MRI images, with an accuracy of 98.18% and an
AUC of 99.02%. This considerable performance is attributed to
EfficientNetB3’s compound scaling approach, which systematically
optimizes network depth, width, and resolution to capture subtle and
heterogeneous MS lesion patterns [61]. ResNet50 and DenseNetl21 also
demonstrated robust performance, with accuracies of 96.97% and 95.77%,
respectively, and AUC values exceeding 98%. Their success can be
attributed to residual learning and dense feature reuse, which enhance
hierarchical feature extraction (49, 53). In contrast, the simpler CNN
architecture shows the lowest performance, reflecting its limited capacity to
model the complex lesion patterns.

For sagittal MRI, ResNet50 excelled with near-perfect metrics (accuracy:
99.15% and AUC: 99.93%). DenseNet121 followed closely with an accuracy
0f98.87% and an AUC 0f 99.83%, leveraging dense connectivity to integrate
multi-scale features. EfficientNetB3, while still highly effective, showed
slightly lower performance (accuracy 97.46% and AUC 99.51%), suggesting
its scaling strategy may be less optimal for sagittal-specific features. The
CNN again underperformed, reinforcing the need for deeper architectures in
MS lesion detection.

The hybrid classic-quantum models introduce additional complexity to
traditional deep learning architectures, resulting in varied performance
across MRI planes and models, dependent on the classical backbone and
imaging plane. For axial MRI, QDenseNet121 improved accuracy by 1.51%
(95.77% — 97.28%) and AUC by 0.47% (98.66% — 99.13%), likely due to
quantum-enhanced feature disentanglement via amplitude embedding. The
variational quantum circuit’s non-linear transformations may refine high-
dimensional features, improving lesion separability. QResNet50 showed a
0.61% accuracy gain (96.97% — 97.58%) and a 0.62% AUC improvement
(98.69% — 99.31%), suggesting quantum entanglement enhances
discriminative power for residual features. QEfficientNetB3 exhibited no
accuracy improvement (98.18%) and a slight AUC drop (99.02% —
98.14%), indicating its classical optimization may saturate performance. The
QCNN model experienced a modest performance decline, with accuracy
dropping from 93.95% to 93.05% and AUC decreasing from 97.81% to

96.85%, suggesting that simpler classical backbones may lack the
representational capacity to fully leverage quantum augmentation.

For Sagittal MRI, QEfficientNetB3 improved accuracy by 0.84% (97.46%
— 98.30%) but slightly reduced AUC (99.51% — 99.32%), suggesting a
trade-off between classification and ranking performance. QResNet50 and
QDenseNet121 showed modest, possibly due to interference with pre-trained
residual/dense features critical for sagittal lesions. QCNN model also
underperformed in sagittal MRI, reinforcing the notion that simpler
architectures struggle to benefit from quantum enhancements, possibly due
to limited quantum circuit complexity and classical representational power.
The hybrid models employed two primary quantum feature encoding
strategies. First, amplitude embedding used in QDenseNet121 and
QResNet50. maps classical feature vectors g€ Rngubits to a normalized
quantum state |y0)= qllqll2 Theoretical analyses show that amplitude
embedding can exponentially compress high-dimensional data into quantum
states; however, it requires O(2n) classical preprocessing, which limits
scalability [62]. Second, angle embedding, utilized in QEfficientNetB3,
encodes n features as qubit rotations ngubits—1  (i)[0), offering better
scalability with complexity O(n), but it may lose some global correlations
present in the data [63].

The quantum circuits incorporate parametrized rotation gates, which are
optimized via backpropagation. These gates introduce quantum-specific
non-linear transformations, potentially enhancing feature extraction, as seen
in QDenseNet121’s AUC improvement for axial MRI. CNOT gates in a ring
topology create entanglement between adjacent qubits, enabling quantum
correlations that may capture long-range dependencies across distant image
regions, relevant for MS detection due to lesions’ heterogeneous spatial
distributions. This mechanism could contribute to QResNet50’s AUC gain,
though QEfficientNetB3’s AUC drop suggests context-specific benefits
limited by circuit design (e.g., qubit count, entanglement scope).

Measurement of the quantum states is performed via Pauli observables (ox)
and (oz). The (oz) observable encodes local qubit polarization, which is
sensitive to lesion intensity variations, while (ox) captures coherence
between lesions and healthy tissue. The classical fully connected layers then
map the measured quantum features to output predictions, with quantum
noise such as shot noise being regularized through dropout techniques.

Despite these promising results, several challenges limit the clinical
applicability of hybrid classical-quantum models. Current quantum hardware
constraints restrict the number of qubits. impacting the dimensionality of the
feature space that can be encoded. Additionally, clinical MRI data often
contain artifacts. such as motion blur and partial volume effects, which can
degrade quantum coherence and computational fidelity. Future work should
prioritize error mitigation strategies. such as dynamical decoupling and
probabilistic error cancellation, to enhance robustness under noisy
conditions. Furthermore. the theoretical framework for quantum advantage
in medical imaging remains underdeveloped, with rigorous performance
bounds yet to be established. Future research should focus on deriving
rigorous mathematical frameworks to quantify the conditions under which
quantum enhancements provide measurable improvements over classical
approaches. Addressing these challenges will be essential for translating
quantum-based diagnostic tools from theoretical constructs into clinically
viable solutions.

Conclusion

This study demonstrates that classical deep learning architectures achieve
robust performance in MS lesion detection across different MRI planes, with
residual and densely connected networks showing particular effectiveness.
Hybrid quantum-classical models provide improvements, enhancing certain
architectures through quantum-enabled feature refinement while offering no
advantage for simpler networks. The benefits of quantum integration prove
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highly dependent on both the base model's design and the specific imaging
plane being analyzed. While quantum circuits show promise for medical
image analysis through their unique feature encoding and transformation
capabilities, their current utility remains constrained by fundamental
limitations in scalability and noise susceptibility. Future progress in this
emerging field will depend on co-designed quantum-classical systems.
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