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Abstract 

Accurate detection of multiple sclerosis (MS) lesions in magnetic resonance imaging (MRI) requires robust deep learning 

models to capture subtle spatial and textural features. We introduce hybrid quantum-classical transfer learning algorithms 

for MS classification using axial and sagittal MRI scans, combining classical convolutional neural networks (CNNs) 

including EfficientNetB3, ResNet50, DenseNet121 with parameterized quantum circuits to enhance feature representation 

via entanglement and quantum-specific non-linearities. Quantum layers are trained end-to-end with classical backbones 

via backpropagation, enabling seamless integration of quantum-enhanced features. For axial MRI, QResNet50 achieved 

a high accuracy of 97.58% and AUC of 99.31%, while QDenseNet121 reached 97.28% accuracy and 99.13% AUC. For 

sagittal MRI, classical ResNet50 excelled with 99.15% accuracy and 99.93% AUC, while QEfficientNetB3 improved 

accuracy (97.46% to 98.30%) but reduced AUC (99.51% to 99.32%), and QDenseNet121 achieved 98.87% accuracy and 

99.83% AUC. Hybrid models showed mixed results, with QCNN underperforming, suggesting quantum benefits are 

architecture-dependent. Despite simulated quantum circuits mitigating hardware limitations, our results demonstrate the 

potential to enhance diagnostic performance in specific architectures. This work clarifies a foundational step toward 

quantum-enhanced deep learning for clinical applications, opening research directions in quantum- aware transfer learning 

and error mitigation for biomedical imaging. 
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1.Introduction 

Quantum machine learning (QML), which lies at the intersection of quantum 

computing and classical machine learning, has undergone significant 

advancements in recent years due to the unique strengths of quantum 

technology in enhancing data processing and model training [1]. However, 

current hardware limitations, such as limited qubit counts and error rate, 

continue to pose challenges for the full realization and scalability of quantum 

models [2,3]. Quantum neural networks (QNNs), a key component of QML, 

have demonstrated promising results across various domains by utilizing 

quantum phenomena like superposition and entanglement to improve 

learning performance. Among the various quantum neural network 

architectures, Quantum Convolutional Neural Networks (QCNNs) have 

emerged as a powerful hybrid quantum-classical approach [4]. QCNNs 

utilize the potential of quantum computing inspired by classical 

convolutional neural networks to reduce dimensionality and tackle complex 

high-dimensional problems. This approach is especially valuable in 

healthcare applications and medical diagnostics, particularly for the early 

detection of Multiple Sclerosis (MS), where timely and accurate diagnosis is 

critical. 

Multiple Sclerosis is a chronic inflammatory disorder of the central nervous 

system characterized by damage to the myelin sheath and nerve fibers [5]. 

The myelin sheath is a fatty-protein coating that insulates nerve cells in the 

brain and spinal cord, enabling rapid transmission of electrical impulses [6]. 

Damage to this protective layer disrupts nerve signal conduction and leads 

to the formation of scar tissue, known as plaques or sclerosis. 

The number of people suffering from this disease is estimated to be 

approximately 2-3 million worldwide [7]. Multiple sclerosis is more 

commonly observed in young to middle-aged females, although this has not 

always been the case [8]. The etiology of MS remains unclear, but it is widely 

recognized as a multifactorial disease influenced by genetic and 

environmental risk factors [9,10]. The pathology of MS is highly 

heterogeneous, posing challenges in accurately diagnosing the disease in its 

early stages, measuring progression, and evaluating treatment efficacy [8]. 

Its diagnosis remains difficult due to the absence of specific symptoms, 

physical findings, or laboratory tests that can definitively confirm the 

condition [11]. Consequently, physicians rely on a combination of diagnostic 

methods, including thorough review of the patient's medical history, 

neurological examinations, magnetic resonance imaging (MRI), 

cerebrospinal fluid analysis, and blood tests [10], [12-15] to exclude other 

conditions that present with similar symptoms. Among these, MRI 

modalities are considered the most effective non-invasive tool for detecting 
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MS lesions, providing crucial information about brain structure and tissue 

abnormalities. MRI biomarker, such as lesion count, evolution over time, and 

brain volume measurements (including grey matter and white matter) are 

valuable indicators for disease prognosis and treatment response [16-19]. To 

enhance diagnostic accuracy, boost efficiency, and minimize manual errors, 

artificial intelligence (AI)-powered computer-aided diagnosis systems have 

been integrated with conventional MRI technology. 

Recent advancements in AI, particularly deep learning (DL) methods like 

convolutional neural networks (CNNs), has significantly enhanced the 

accuracy and efficiency of diagnosing MS through MRI data analysis 

[20,21]. In a study, multiple sclerosis patients were categorized based on 

their disability level using a deep learning model incorporating convolutional 

neural networks [22]. The model outperformed traditional methods by 

effectively extracting optimal MRI features. Attention-map analysis showed 

the frontotemporal cortex and cerebellum play crucial roles in predicting 

disability and also indicated that MS progression involves a complex 

distribution of neural damage across the central nervous system. In another 

study, a four-layer deep belief network was used to extract latent features 

from normal-appearing white and gray matter image patches, selected via 

voxel-wise t-tests and excluding lesion-overlapping areas [23]. These 

features were then undergone LASSO-based selection to reduce overfitting 

and are used to train a random forest classifier to distinguish multiple 

sclerosis patients from healthy controls. The integration of multimodal 

myelin and T1-weighted features enhanced classification accuracy compared 

to single-modality approaches, highlighting the advantage of joint feature 

learning in improving predictive performance. 

To improve the accuracy of multiple sclerosis diagnosis using MRI scans, a 

model was developed that integrates a multi-view ResNet architecture with 

novel attention mechanisms-the View Space Attention Block (VSAB) and 

View Channel Attention Block (VCAB)-to extract detailed features from 2D 

brain images. Additionally, the Quantum RIME (QRIME) algorithm was 

introduced, combining RIME with Quantum Behaved Particle Swarm 

Optimization (QPSO) to perform efficient dimensionality reduction, thereby 

enhancing both diagnostic accuracy and computational efficiency [24]. The 

results showed the potential of AI applications in improving the early 

detection of neurodegenerative diseases. In another study, disability 

progression prediction in MS patients was investigated using a time-

dependent deep learning model based on sequential medical imaging data 

[25]. The study captured temporal relationships across multiple MRI 

timepoints and demonstrated that quantum models achieved competitive 

performance compared to classical neural network architectures in binary 

classification of MS disability. 

In this study. we explored the application of classical and hybrid quantum-

classical deep learning models for the detection of MS lesions in axial and 

sagittal brain MRI scans. Given the heterogeneous spatial distribution and 

textural characteristics of MS lesions, the ability of these models to adapt to 

such variability plays a crucial role in achieving reliable and robust 

diagnostic performance. Leveraging transfer learning techniques with 

architectures such as ResNet50, EfficientNetB3, and DenseNet121, we 

established a classical baseline before integrating parameterized quantum 

circuits to form hybrid quantum-classical models. A comparative evaluation 

across imaging planes revealed distinct performance trends, showing both 

the promise and current limitations of quantum-enhanced deep learning in 

the context of medical image analysis. 

This study is systematically organized to investigate hybrid quantum-

classical approaches for MS detection. The Introduction highlights the 

clinical importance of MS diagnosis and reviews the application of deep 

learning methods in improving diagnostic accuracy using MRI data. The 

Methods section provides a rigorous technical exposition of: (i) classical 

CNN architectures (CNN, DenseNet121, ResNet50, EfficientNetB3) and 

their quantum hybrid variants, (ii) quantum circuit design principles 

including amplitude/angle embedding strategies, and (iii) the experimental 

framework encompassing data preprocessing and hyperparameter 

optimization. The Results section presents a comprehensive performance 

analysis across axial and sagittal MRI planes, with quantitative evaluation 

through accuracy, precision, recall, F1-score, and AUC metrics. The 

Discussion explains these findings within current literature, examines the 

differences between quantum and classical performance, and addresses 

practical implementation constraints. Finally, the Conclusion synthesizes 

key insights regarding quantum-enhanced feature learning while outlining 

future research directions in quantum medical imaging. 

2 Theoretical Background 

2.1 Quantum Computing 

In this section, we provide a brief background and introduce fundamental 

quantum computing concepts. These preliminaries will be used to describe 

the QCNN algorithms in the following sections. 

Quantum bit (qubit): A qubit is mathematically described as a vector in a 

two-dimensional Hilbert space, with the computational basis states |0⟩ and 

|1⟩ forming its foundation [26]. Unlike classical bits, qubits can exist in a 

superposition state, meaning they can simultaneously represent a linear 

combination of these basis states weighted by complex probability 

amplitudes. This property enables quantum entanglement, where the states 

of several qubits become connected so that the state of each qubit depends 

on the others, no matter how far apart they are. When one qubit in an 

entangled system is measured, its state collapses and immediately determines 

the states of the others. These extraordinary features allow entangled qubits 

to encode and process information in ways that far exceed the capabilities of 

classical bits, giving quantum computers the potential to solve certain 

complex problems much more efficiently than traditional computers. 

Quantum gates: Quantum gates are mathematical operations that act on one 

or more qubits to change their quantum states [27]. The most commonly used 

gates include the Hadamard, CNOT, Rotation, and Pauli gates. The 

Hadamard gate creates superposition by transforming a qubit from a definite 

state into a combination of |0⟩ and |1⟩ states, while the CNOT gate as a two-

qubit gate generates entanglement between qubits. Rotation gates perform 

parameterized rotations around the 𝑋. 𝑌. or 𝑍 axes of the Bloch sphere, and 

Pauli gates (𝑋. 𝑌. and 𝑍) are used for controlled bit and phase flips. 

Quantum circuits: Quantum circuits consist of sequences of quantum gates 

arranged according to quantum algorithms to manipulate qubits [28]. These 

circuits generate superposition and entanglement, which serve as 

fundamental resources for quantum computation. Quantum gates and circuits 

form the foundational elements in designing quantum computing models. 

Within a quantum circuit, measurement gates convert quantum states into 

classical information by collapsing them. Typically, several measurements 

are conducted, and their results are aggregated to estimate observable values 

and make predictions [29]. 

2.2 Quantum neural network (QNN) 

A quantum neural network in contrast to a classical convolutional neural 

network, consists of quantum layers that typically include three main 

components: embedding (data encoding), quantum circuits (often variational 

circuits with parameterized gates and entanglement), and measurement [30]. 

Initially, classical data is encoded into a quantum state via a state preparation 

routine or feature map, which is usually designed to enhance model 

performance [31]. Following encoding, a variational quantum circuit with 

parameterized gates is applied and optimized for a specific task through loss 

function minimization [32]. The output of the quantum model is then 

obtained by measuring the quantum state and applying classical post-

processing to the measurement outcomes. This framework allows QNNs to 

leverage quantum phenomena to potentially improve computational 

efficiency and representational capacity compared to classical neural 

networks. 

2.3 Quantum Encoding 

Quantum machine learning relies on embedding classical data into quantum 

states using quantum principles [33]. This process involves mapping data 

vectors into parameters that define quantum circuits, thereby generating 

quantum feature representations in Hilbert space. Two common encoding 

methods are amplitude encoding and angle encoding. 
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Amplitude encoding: In amplitude encoding, classical data is embedded into 

the probability amplitudes of a quantum state. By exploiting quantum 

superposition, the encoded information is accessed by measuring the 

quantum state’s amplitudes [34]. A key advantage is its efficiency in 

representing large datasets using relatively few qubits. Specifically, 

encoding a classical dataset with 𝑀 data points and 𝑁 features per point 

requires 𝑛=𝑙𝑜𝑔2(𝑁𝑀) qubits. 

To perform amplitude encoding, classical data vectors 𝑥 = (𝑥1. 𝑥2. … . 𝑥𝑁) 

are mapped to quantum states as: 

N−1 
1 

|ψ⟩ = 
‖𝑥‖ 

∑ 𝑥𝑖 |𝑖⟩ 

i=1 

where |𝑖⟩ denotes the computational basis states and 𝑥𝑖 represents the 𝑖 -th 

component of the classical data. The quantum system is initially prepared in 

the all-zero state |0⟩⊗𝑛. Where 𝑛 is the number of qubits determined by the 

dataset size. A sequence of unitary operations, such as rotations and 

controlled gates, is then applied to transform this initial state into the desired 

encoded quantum state. 

Angle encoding: Angle encoding embeds classical data into quantum states 

via parameterized rotations around the 𝑋. 𝑌. or 𝑍 axes, with angles 

corresponding to data values. For example, a classical data vector 𝑥 = (𝑥1. 

𝑥2. … . 𝑥𝑁) can be encoded using rotations around the 𝑌-axis as: |ψ(𝑥)⟩ = 

𝑅𝑦(𝑥1) ⊗ 𝑅𝑦(𝑥2) ⊗ … ⊗ 𝑅𝑦(𝑥𝑛)|0⟩⊗𝑛 

Angle encoding maps each feature to the rotation angle of a single qubit, 

requiring one qubit per feature. This method uses relatively fewer quantum 

gates, enhancing its compatibility with existing quantum hardware. 

Generally, encoding a dataset with n features requires exactly n qubits. 

For datasets with a large number of features, amplitude encoding requires 

fewer qubits per data point but demands a higher number of quantum gates 

to prepare the corresponding quantum state. In contrast, angle encoding is 

simpler and more resilient to noise on current quantum devices, making it 

more practical given existing hardware limitations. However, angle encoding 

is less efficient when handling high-dimensional data. Each method offers 

distinct advantages and trade-offs, where the choice between amplitude and 

angle encoding depends on the available quantum hardware capabilities and 

the specific requirements of the machine learning task [35]. 

2.4 Circuit Design 

The circuit design defines the sequence and types of quantum gates applied 

to the qubits after data encoding [36]. Typically, this involves a combination 

of parameterized rotation gates and entangling gates applied to neighboring 

qubits. Entangling gates create quantum correlations across adjacent qubits, 

enabling the circuit to exploit quantum phenomena such as superposition and 

interference. This enhanced representational power enables quantum 

convolutional layers to capture more complex features from imaging data. 

During training, the parameters of the rotation gates are optimized to 

minimize a loss function, tailoring the quantum circuit to the specific 

learning task. 

2.5 Measurement and Output Features 

After processing through the quantum convolutional layer, measurements 

are performed on the qubits to extract expectation values of specific 

observables. These quantum-derived features constitute the output of the 

quantum layer and can be fed into subsequent layers- either quantum or 

classical-enabling hybrid quantum-classical architectures. 

3. Methods 

3.1 Dataset details and preprocessing 

We utilized a dataset comprising 1441 axial and 2016 sagittal FLAIR MRI 

brain images exhibiting visible MS lesions, alongside 2016 axial and sagittal 

image slices depicting normal brain appearance without white matter lesions 

[37]. The images prospectively collected from 72 patients diagnosed with 

MS and 59 healthy control subjects. Fig. 1 presents ten representative 

samples, with randomly selected axial images from the MS and healthy 

groups shown in Fig. 1a and Fig. 1b, respectively, and sagittal images from 

the MS and healthy groups displayed in Fig. 1c and Fig. 1d, respectively. 

 

Figure 1: Representative MRI samples from MS and healthy groups. Randomly selected axial images from (a) MS and (b) healthy groups; 

Randomly selected sagittal images from (c) MS and (d) healthy groups. 

We divided the dataset into training, validation, and test subsets to ensure 

robust model evaluation. Initially, the entire dataset was split into a combined 

training-validation set and a separate test set, with 20% of the data reserved 

for testing. This division employed stratified sampling to preserve the 

original class distribution across the subsets, thereby preventing class 

imbalance issues [38]. Subsequently, the combined training-validation set 

was further split into distinct training and validation subsets, allocating 20% 

of the data for validation. Both splitting steps were conducted using a fixed 

random seed to ensure reproducibility of the data partitions. 

For training data, augmentation was performed using Kornia, a PyTorch-

based computer vision library [39]. Figure. 2a and Figure. 2b depict the size 

of the training image data before augmentation for axial and sagittal images, 

respectively, while Figure. 2c illustrates the size of the training image data 

following augmentation. 
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Figure 2: Training image dataset sizes before and after augmentation. (a) Number of axial training images before augmentation. (b) Number of 

sagittal training images before augmentation. (c) Number of training images after augmentation. 

To standardize input dimensions for the mode, all images were resized to 

224 × 224 pixels. We normalized pixel intensities to the [0.1] range by 

dividing by the maximum 8-bit value (255), ensuring consistent input scaling 

throughout the dataset. 

3.2 Classical deep learning algorithms 

3.2.1 Convolutional neural network 

Among DL models. convolutional neural networks are particularly 

prominent and widely applied in tasks such as object detection, speech 

recognition, image classification, and biomarker detection [40,41]. CNNs 

employ multi-layered architectures to learn hierarchical data representations, 

where each layer extracts increasingly complex features [42]. This structure 

integrates feature extraction and classification into a single efficient 

framework that requires minimal preprocessing. As a result, CNNs can 

automatically learn and identify patterns directly from raw data without 

manual intervention. The core components of CNNs include convolutional 

layers, activation functions, pooling layers, and fully connected layers [41]. 

Convolutional layers: These layers extract distinctive features from input 

data through multiple convolution operations using learnable kernels [43]. 

This process preserves spatial structure while reducing parameters through 

local connectivity and parameter sharing, enabling hierarchical feature 

learning. The output of a convolutional layer is a set of feature maps that 

highlight specific patterns in the data. 

Activation functions: These functions are applied directly to the output of 

convolutional layers to introduce non-linearity into the model [44]. This non-

linearity allows CNNs to capture and represent complex, non-linear 

relationships within data. It enables the network to solve tasks beyond simple 

linear classification or regression and to effectively model intricate real-

world patterns. Common activation functions include the Rectified Linear 

Unit (ReLU), sigmoid, and hyperbolic tangent (tanh). 

Pooling layers: These layers usually follow convolutional and activation 

layers and reduce the number of network connections by down sampling and 

reducing the dimensionality of the input data [45]. This reduction in data size 

lowers computational demands and aids in minimizing overfitting. 

Fully connected (FC) layer: The FC layer is typically positioned at the end 

of a CNN to connect every neuron to all neurons in the preceding layer [46]. 

It receives input from the last convolutional or pooling layer and acts as a 

classifier to enable the network to make predictions. 

In this study, we implement a classical CNN architecture composed of a 

fixed convolutional base followed by a configurable dense classifier. The 

convolutional base includes two blocks: each consists of a Conv2d layer with 

ReLU activation and max pooling. Specifically, the first block applies 32 

filters of size 3×3 with unit padding to the input, followed by ReLU and 2×2 

max pooling with stride 2. The second block increases the number of filters 

to 64 while maintaining the same kernel and padding configuration. After 

feature extraction, spatial dimensions are flattened into a vector whose size 

is determined dynamically during initialization via a dummy forward pass. 

The classifier module is then constructed based on this inferred input size 

and consists of a variable number of fully connected layers, each followed 

by ReLU activation and dropout regularization. The final dense layer outputs 

logits for two classes. Formally, given an input tensor x∈ℝ3×B×H×W, the 

network computes: 

𝑦= Linear𝑜𝑢𝑡 (Dropout (ReLU (Linear𝑑𝑝𝑟𝑒𝑣→𝑑units (… (Dropout (ReLU 
(Linear𝑑𝑝𝑟𝑒𝑣→𝑑units (𝑥𝑓𝑙𝑎𝑡))))) 

where 𝑥𝑓𝑙𝑎𝑡 is the resulting flattened feature vector with shape 𝐵 × 𝑑𝑖𝑛. 𝐵 

represents the batch size (number of input samples processed together), 𝑑𝑖𝑛 

denotes the flattened feature dimension output by the convolutional base. 

𝑑𝑝𝑟𝑒𝑣 and 𝑑𝑢𝑛𝑖𝑡𝑠 represent the input and output dimensions of each linear 

transformation, respectively. 

This modular design supports flexible experimentation with network depth 

and regularization strength while maintaining a simple and interpretable 

baseline CNN structure. 

3.2.2 DenseNet121 Architecture 

Dense Net (Densely Connected Convolutional Network) is a convolutional 

neural network architecture designed to improve feature reuse and gradient 

flow by establishing direct connections between all layers within a dense 

block [47]. DenseNet121, a 121-layer variant, achieves high parameter 

efficiency and strong performance in image classification tasks, making it 

well-suitable for medical imaging applications [48]. Unlike traditional 

CNNs, where layers receive input only from the immediately preceding 

layer, DenseNet121 connects each layer to every preceding layer in the same 

dense block by concatenating their feature maps. Formally, the output of 

layer ℓ is defined as: 

𝑥𝑙 = 𝐻𝑙 ([𝑥0. 𝑥1. … . 𝑥𝑙−1]) 
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Were, [𝑥0. 𝑥1. … . 𝑥𝑙−1] denotes the concatenation of feature maps from all 

previous layers, and Hℓ is a composite function comprising batch 

normalization (𝐵𝑁), 𝑅𝑒𝐿𝑈 activation, and a 3×3 convolution (Conv3×3). To 

improve computational efficiency, a 1×1 convolution (bottleneck layer. 

Conv1×1) precedes 𝐻𝑙 to reduce channel dimensionality and to improve 

computational efficiency: 

𝐻𝑙 = Conv3×3 (𝑅𝑒𝐿𝑈 (𝐵𝑁 (Conv1×1([𝑥0. 𝑥1. … . 𝑥𝑙−1])))). 

Each layer in a dense block produces 𝑘 feature maps, where 𝑘 is the growth 

rate (commonly 32), resulting an output channel count after 𝑙 layers: 

𝐶𝑂𝑢𝑡 = 𝐶𝑖𝑛 + 𝑘 × 𝑙 

In our implementation, we used the pretrained DenseNet121 backbone from 

torchvision, modified to freeze the initial stem layer and the first dense block 

to prevent overfitting on small datasets. The final classifier layer is replaced 

with a configurable stack of FC layers, including ReLU activations and 

dropout regularization. Specifically: 

• The output of the DenseNet121 backbone is passed through an 

adaptive average pooling layer, reducing spatial dimensions to 

1×1. 

• The resulting tensor is flattened into a 1024-dimensional feature 

vector. 

• A variable number of FC layers follow, each with configurable 

width and dropout rate. 

• The final linear layer outputs logits for two classes. 

3.2.3 ResNet50 Architecture 

Residual Networks (ResNet) address the vanishing gradient problem by 

introducing residual connections that facilitate the training of deeper 

convolutional neural networks [49]. These skip connections allow gradients 

to flow more directly through the network, simplifying optimization and 

improving learning stability. While residual connections help mitigate 

vanishing gradients, batch normalization and ReLU activation also play 

critical roles in ensuring stable and efficient training. 

ResNet50, a 50-layer variant, achieves strong performance in image 

classification and is widely adopted in various applications due to its balance 

between accuracy and computational efficiency [50]. The architecture begins 

with a stem comprising a 7×7 convolution, batch normalization, ReLU 

activation, and a 3×3 max-pooling layer, which transforms input images into 

feature maps of size 64 channels. This is followed by four stages of residual 

bottleneck blocks. Each block expands, transforms, and reduces channel 

dimensions using three convolutional layers: two 1×1 convolutions and one 

3×3 convolution: 

𝑥𝑜𝑢𝑡 = 𝑥 + 𝐶𝑜𝑛𝑣𝑟𝑒𝑑𝑢𝑐𝑒 (𝑅𝑒𝐿𝑈 (𝐵𝑁 (𝐶𝑜𝑛𝑣3×3 (𝑅𝑒𝐿𝑈 (𝐵𝑁 
(𝐶𝑜𝑛𝑣𝑒𝑥𝑝𝑎𝑛𝑑(𝑥))))))) 

1×11×1 

Where, Convexpand expands channels, 𝐶𝑜𝑛𝑣 applies a 3×3 convolution, and 

𝐶𝑜𝑛𝑣𝑟𝑒𝑑𝑢𝑐𝑒 

reduces channels to the output dimension 𝐶𝑜𝑢𝑡. A skip connection adds the 

input x to the output. with a 1×1 convolution applied to x if channel 

dimensions differ. For an input of size 224×224, the final stage of four 

outputs features maps of size 7×7×2048, which are spatially reduced via an 

adaptive average pooling layer to a 2048-dimensional vector: 

𝑥𝑝𝑜𝑜𝑙𝑒𝑑 = 𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒𝐴𝑣𝑔𝑃𝑜𝑜𝑙1×1(𝑥) 

The classifier consists of a configurable stack of fully connected layers, each 

with ReLU activation and dropout, culminating in a final linear layer that 

produces class logits: 

𝑦 = Linear𝐶𝑜𝑢𝑡 (Dropout (ReLU (Linear𝑑𝑢𝑛𝑖𝑡𝑠 (… 

(Flatten(𝑥𝑝𝑜𝑜𝑙𝑒𝑑)))))) 

Where, Flatten converts the pooled features into a vector of size 2048 [51]. 

To leverage transfer learning, we initialize the ResNet50 backbone using 

pretrained weights from a specified path. The stem and the first residual 

stage— including the initial convolution, batch normalization, activation, 

max pooling, and first residual block — were frozen to preserve low-level 

features learned on large-scale datasets. Later layers and the newly defined 

dense classifier were fine-tuned during training. 

3.2.4 EfficientNet-B3 Architecture 

Efficient Net is a family of convolutional neural networks that optimize 

accuracy and efficiency by uniformly scaling network depth, width, and 

input resolution using a compound scaling factor [52,53]. EfficientNet-B3, a 

mid-sized variant, balances computational cost and performance, making it 

suitable for image classification tasks. The architecture is composed of a 

stem layer followed by a sequence of mobile inverted bottleneck convolution 

(MBConv) blocks augmented with squeeze-and-excitation (SE) modules 

[54]. Each MBConv block processes input feature maps x∈ℝH×W×Cin 

through the following operations: 

 

Here, 𝐶𝑜𝑛𝑣𝑒𝑥𝑝𝑎𝑛𝑑1×1 increases channel dimensionality, 𝐶𝑜𝑛𝑣𝑑𝑒𝑝𝑡ℎ𝑤𝑖𝑠𝑒 
𝑘×𝑘 applies a depth wise convolution, and 𝐶𝑜𝑛𝑣𝑟𝑒𝑑𝑢𝑐𝑒 reduces channels. 

A residual skip connection adds the input x to the output when their 

dimensions’ match. The 𝑆𝐸 feature maps via global average pooling and two 

fully connected layers: 

𝑆𝐸(𝑥) = 𝑥 · 𝜎 (𝐹𝐶2 (Swish (𝐹𝐶1(Global Avg Pool(𝑥))))) 

Where, Global Avg Pool reduces spatial dimensions. 𝐹𝐶1 and 𝐹𝐶2 are fully 

connected layers and σ is the sigmoid function. 

The EfficientNet-B3 backbone outputs feature maps of size 1536 channels 

for standard 224×224 RGB inputs. These feature maps are spatially reduced 

via global average pooling, resulting in a 1536-dimensional feature vector. 

The final classifier includes a configurable stack of FC layers with ReLU 

activation and dropout regularization, culminating in a linear output layer 

producing class logits: 

𝑦 = Linear𝐶𝑜𝑢𝑡 (Dropout (ReLU (Linear𝑑𝑢𝑛𝑖𝑡𝑠 (… (Flatten(𝑥)))))) 

Where, flatten reshapes pooled features into a vector of size 1536. 

To leverage transfer learning, we initialized the EfficientNet-B3 backbone 

using pretrained weights. Early layers—including the stem and initial 

MBConv blocks (up to block 4)—were frozen to retain pretrained features 

and reduced overfitting on small datasets. Later layers and the newly defined 

dense classifier were fine-tuned during training. 

3.3 Hybrid classical-quantum model 

In this study, we introduced hybrid classical-quantum models including 

QCNN, QDenseNet121, QResNet50, and QEfficientNet-B3 that integrate 

classical convolutional feature extraction with a variational quantum circuit 

to construct a quantum-enhanced classifier. The architecture is composed of 

three main components: (i) a classical convolutional base for spatial feature 

learning, (ii) a dimensionality reduction layer that maps classical features 

into a quantum-compatible latent space, and (iii) a parametrized quantum 

circuit followed by a flexible dense classifier. Figure. 3 shows the schematic 

flowchart of hybrid classical-quantum models architectures that are 

explained in further sections. Overall details of each architecture are also 

shown in Figure. 4. 
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Figure 3: Schematic representation of the hybrid classical-quantum architectures. 

 

Figure 4: Overall details of hybrid classic-quantum architecture. 



International Journal of Clinical Surgery                                                                                                                                                                                            Page 7 of 14 

𝚐𝑢𝑏𝑖𝑡𝑠 

3.3.1 QCNN Architecture 

The QCNN model begins with a standard convolutional neural network 

comprising two blocks of Conv2d-ReLU-MaxPool operations. Each 

convolutional layer preserves spatial resolution through unit padding while 

increasing channel depth, followed by 2×2 max pooling that reduces spatial 

dimensions. This feature extraction stage ensures that the model captures 

hierarchical spatial patterns before transitioning to quantum processing. The 

output is then flattened and projected via a linear layer into a latent vector of 

size 𝑛qubits, matching the number of qubits in the subsequent quantum layer. 

The quantum component is implemented as a parameterized quantum circuit 

executed on a simulated device using PennyLane (55). Each qubit undergoes 

an RX rotation based on the corresponding classical input, followed by 

multiple layers of entangling CNOT gates and trainable Z-axis rotations. 

Expectation values of Pauli-Z observables across all qubits are returned as 

the final measurement and fed into a configurable stack of dense layers. 

These dense layers consist of fully connected layers, each followed by ReLU 

activation and dropout regularization, except the final output layer which 

maps to 2 class logits. 

The model processes input images through the following stages: 

1. Convolutional Feature Extraction: 

𝑥𝑓𝑒𝑎𝑡 = 𝐶𝑜𝑛𝑣𝑁𝑒𝑡(𝑥) 

Where, 𝐶𝑜𝑛𝑣𝑁𝑒𝑡 consists of two Conv2d-ReLU-MaxPool blocks, reducing 

spatial dimensions. 

2. Flattening and Dimensionality Reduction: 

𝑥𝑓𝑙𝑎𝑡 = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑥𝑓𝑒𝑎𝑡) 

𝑥𝑙𝑎𝑡𝑒𝑛𝑡 = 𝐿𝑖𝑛𝑒𝑎𝑟𝑑𝑖𝑛→ 𝑛 (𝑥𝑥𝑓𝑙𝑎𝑡) 

𝑥𝑒𝑛𝑐𝑜𝑑𝑒𝑑 = 𝜎 (𝑥𝑙𝑎𝑡𝑒𝑛𝑡) 

Where, σ denotes the sigmoid function, ensuring inputs fall within the valid 

range for quantum encoding and 𝑥𝑙𝑎𝑡𝑒𝑛𝑡 is obtained through a linear 

transformation projects the high- dimensional flattened features into a lower-

dimensional space with size matching the number of qubits in the quantum 

circuit 

3.Quantum Circuit Layer: 

The encoded vector 𝑥𝑒𝑛𝑐𝑜𝑑𝑒𝑑 is fed into a variational quantum circuit. Each 

batch element is processed independently on a simulated quantum device 

with n𝑞 qubits. The circuit performs input encoding: 

∣ ψ𝑖⟩ = 𝑅𝑋 (𝑥𝑒𝑛𝑐𝑜𝑑𝑒𝑑 [… 𝑖]) ∣ 0⟩ 

followed by entangling CNOT gates and RZ rotations across layers. Final 

measurements are taken as: 

𝑥𝑞 = [〈Z0⟩. … . 〈Zn𝚐 − 1⟩] 

4. Final Classification: 

y = Classifier (𝑥𝑞) 

The classifier consists of a customizable sequence of fully connected layers, 

each followed by ReLU activation and dropout regularization, ending with a 

final linear layer that outputs the class logits. 

3.3.2 QDensenet121/QResNet50 Architecture 

1.Classical Feature Extraction 

The backbone of QDenseNet121 or QResNet50 extract high-level feature 

vectors z ∈ ℝ 1024 and z∈ ℝ 2048, respectively, via adaptive average pooling 

of convolutional feature maps. These vectors are further processed by ndense 

fully connected layers with ReLU activations and dropout regularization: 

ℎ𝑖+1 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡𝑝𝑑𝑟𝑜𝑝 (𝑅𝑒𝐿𝑈 (𝑊𝑖ℎ𝑖 + 𝑏𝑖)). 𝑖 = 1. … . 𝑛𝑑𝑒𝑛𝑠𝑒 − 1 

where ℎ0 = 𝑧. 𝑊𝑖 ∈ ℝ𝑢𝑑𝑒𝑛𝑠𝑒 × 𝑢𝑖𝑛. 𝑏𝑖 ∈ ℝ𝑢𝑑𝑒𝑛𝑠𝑒. 𝑢𝑖𝑛is the input 

dimension for the first dense layer, and 𝑢𝑑𝑒𝑛𝑠𝑒 is the number of units in 

each classical dense layer, thereafter. The final dense layer projects to a 

vector of size 2𝑛𝚐𝑢𝑏𝑖𝑡𝑠: 

𝑞 = 𝜋 · σ (𝑊𝑞ℎ𝑛𝑑𝑒𝑛𝑠𝑒 + 𝑏𝑞) 

Where, σ is the sigmoid function, ensuring the quantum circuit input 

parameters lie within [0, π], 𝑊𝑞 and 𝑏𝑞 are weight matrix and bias vector 

projecting the final dense layer output to the quantum circuit input size 

2𝑛𝚐𝑢𝑏𝑖𝑡𝑠. 

2. Quantum Circuit Encoding and Variational Layers 

The vector q is normalized and encoded into a quantum state via amplitude 

embedding on an 𝑛𝑞𝑢𝑏𝑖𝑡𝑠-qubit system: 

 

Here, ∣ ψ0⟩ ∈ ℂ2 is a normalized quantum state. 

The variational quantum circuit consists of 𝑛𝑙𝑎𝑦𝑒𝑟𝑠 layers, each applying 

parameterized single-qubit 𝑈𝑅𝑜𝑡 (𝜃𝑘.𝑗.0. 𝜃𝑘.𝑗.1. 𝜃𝑘.𝑗.2) = 𝑅𝑧(𝜃𝑘.𝑗.2). 

𝑅𝑦(𝜃𝑘.𝑗.1). 𝑅𝑧(𝜃𝑘.𝑗.0) rotations on qubit j, followed by entangling CNOT 

gates between adjacent qubits: 

𝐶𝑁𝑂𝑇𝑗. 𝑗+1 =∣ 0⟩⟨0 ∣𝑗⊗ 𝐼𝑗+1 +∣ 1⟩⟨1 ∣𝑗⊗ 𝑋𝑗+1 

in which, 𝐼 denotes identiy matrix and 𝑋 indicates X rotation. The output is 

a vector of expectation values: 

 

Where, σj x and σj z are Pauli operators. 

3. Classical Post-Processing and Classification 

The quantum output e is fed into a classical classifier comprising two fully 

connected layers with ReLU activation and dropout: 

𝑓1 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡𝑝𝑑𝑟𝑜𝑝+0.1(𝑅𝑒𝐿𝑈 (𝑊𝑖𝑒 + 𝑏𝑖)) 

𝑦 = 𝑊2𝑓1 + 𝑏2 

Where 𝑊𝑖 ∈ ℝ𝑢𝑑𝑒𝑛𝑠𝑒 × 𝑢𝑖𝑛, 𝑏𝑖 ∈ ℝ𝑢𝑑𝑒𝑛𝑠𝑒, 𝑊2 ∈ ℝ2×𝑢𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙, y ∈ ℝ2 represents 

binary class logits. 

3.3.3 QEfficientNetB3-quantum architecture 

1.Classical Feature Processing 

The EfficientNet-B3 backbone extracts a feature vector z∈ℝ1536 via global 

average pooling of its final convolutional output. This vector is processed 

through fully connected layers with ReLU activation and dropout 

regularization: 

ℎ𝑖+1 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡𝑝𝑑𝑟𝑜𝑝 (𝑅𝑒𝐿𝑈 (𝑊𝑖ℎ𝑖 + 𝑏𝑖)) 

for 𝑖 = 1. … . 𝑛𝑑𝑒𝑛𝑠𝑒 − 1, ℎ0 = 𝑧, 𝑊𝑖 ∈ ℝ𝑢𝑑𝑒𝑛𝑠𝑒 × 𝑢𝑖𝑛, 𝑏𝑖 ∈ ℝ𝑢𝑑𝑒𝑛𝑠𝑒, and 

𝑢𝑖𝑛 = 1536 for the first layer and 𝑢𝑑𝑒𝑛𝑠𝑒 (subsequent layers). The final layer 

projects to 𝑛𝑞𝑢𝑏𝑖𝑡𝑠 dimensions (one feature per qubit) and scales to [0, π] 

via a sigmoid: 

𝑞 = 𝜋. σ (𝑊𝑞ℎ𝑛𝑑𝑒𝑛𝑠𝑒 + 𝑏𝑞) 

ensuring rotation angles ∈ [0. π] for quantum encoding. 

2. Quantum Circuit Design 

The circuit employs angle embedding to map classical features to qubit 

rotations, reducing computational overhead compared to amplitude 

embedding: 

𝑛𝚐𝑢𝑏𝑖𝑡−1 
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∣ 𝜓 ⟩ =⊗ 𝑛𝚐𝑢𝑏𝑖𝑡−1 𝑅𝑋(𝑞) ∣ 0⟩ 

0 𝑖=0 𝑖 

3. Variational Quantum Layers 

The circuit applies nlayers layers of trainable rotations and entangling gates: 

Rotational Gates: Each layer k applies Rx. RY. RZ rotations parameterized by 

weights θk.j.m: 

𝑈𝑅𝑜𝑡(𝜃𝑘. 𝑗) = 𝑅𝑥(𝜃𝑘.𝑗.2) 𝑅𝑌(𝜃𝑘.𝑗.1) 𝑅𝑋(𝜃𝑘.𝑗.0) 

Where, j indexes qubits and m indexes rotation axes. 

Entanglement: CNOT gates create a ring topology (qubit j entangled with 

(j+1) mod nqubits): 

 

4. Measurement and Classical Classifier 

The circuit measures Pauli-Z expectations on all qubits: 

𝑒 = [〈𝜎0〉. … . 〈𝜎
𝑛𝚐𝑢𝑏𝑖𝑡𝑠−1

〉] ∈ ℝ𝑛𝚐𝑢𝑏𝑖𝑡𝑠 

𝑧 𝑧 

A classical fully connected network processes e to produce logits: 

𝑦 = 𝑊2 (𝐷𝑟𝑜𝑝𝑜𝑢𝑡𝑝𝑑𝑟𝑜𝑝+0.1(𝑅𝑒𝐿𝑈 (𝑊1𝑒 + 𝑏1))) + 𝑏2 

Where, W2∈R2×dclassical. 

3.3.4 Optimization 

The hybrid quantum-classical models were trained using a combination of 

cross-entropy loss and L2 regularization to prevent overfitting and improve 

generalization: 

 

Where 𝑡𝑖 ∈ {0.1}2 is the true label, 𝑦𝑖 = softmax(𝑦𝑖) is the predicted 

probability, and ||𝑊||2Fis the Frobenius norm of weight matrices, using 

learning rate 𝜂. 

To further enhance training efficiency and avoid overfitting, we 

implemented an early stopping mechanism that monitors validation loss 

during training. This ensures optimal use of computational resources while 

retaining the most effective model state observed throughout training. 

Hyperparameter tuning was carried out using Optuna, a powerful framework 

for automated hyperparameter optimization [56]. Over 50 trials were 

executed across a predefined search space encompassing both classical and 

quantum parameters. For each trial, Optuna evaluated model performance 

based on validation metrics, iteratively refining its search strategy to identify 

the most promising configurations. The final optimal set of hyperparameters 

was selected based on overall performance across training, validation, and 

test sets. All experiments were conducted on the Leonardo supercomputer, 

part of the European high-performance computing infrastructure hosted by 

the CINECA interuniversity consortium [57]. We utilized the 

“boost_usr_prod” SLURM partition, which provides access to NVIDIA 

A100 GPUs through the Leonardo Booster environment for accelerated deep 

learning computations. Additionally, a subset of algorithms was tested using 

an NVIDIA A100 GPU from a paid Google Colab Pro account to ensure 

development flexibility and reproducibility across environments. 

4 Results 

The performance metrics highlight the potential of hybrid classical-quantum 

models for enhancing MS detection, particularly in capturing complex lesion 

patterns. The optimized hyperparameters for each method are detailed in 

Table 1. Improvements in AUC, a critical metric for distinguishing MS 

lesions from normal tissue, were observed in QDenseNet121 and QResNet50 

for axial MRI, suggesting quantum layers can enhance discriminative power 

in certain architectures. However, inconsistent benefits across models 

indicate that quantum integration is context-specific, influenced by classical 

model complexity and quantum circuit design. Performance declines in 

QCNN and QEfficientNetB3 further reveal the need for careful architectural 

design to maximize quantum contributions. 

Method MRI_ Axial MRI_ Sagittal 

CNN Batch size = 16 

dense units=240 

dense layers=2 

dropout = 0.451 

l2_lambda = 0.0004 

learning rate = 0.00013 

batch size = 32 dense 

units=240 dense 

layers=2 dropout = 

0.464 

l2_lambda = 0.0003 learning 

rate = 0.000057 

DenseNet121 batch size = 32 

dense units=96 

dense layers=1 

dropout = 0.401 

l2_lambda = 0.00095 

learning rate = 0.00052 

batch size = 32 dense 

units=136 dense 

layers=2 dropout = 

0.400 

l2_lambda = 0.0065 

learning rate = 0.00059 

ResNet50 batch size = 16 dense 

units=188 dense 

layers=2 dropout = 

0.454 

l2_lambda = 0.0002 

learning rate = 0.00009 

batch size = 16 dense 

units=126 dense 

layers=1 dropout = 

0.462 

l2_lambda = 0.0001 

learning rate = 0.00053 

EfficientNet-B3 
batch size = 64 dense 

units = 211 

dense layers = 1 

dropout = 0.455 

l2_lambda = 0.0042 

learning rate = 0.00099 

batch size = 32 dense 

units = 70 

dense layers=2 dropout 

= 0.476 

l2_lambda = 0.00035 

learning rate = 0.00072 

QCNN 
batch size = 32 dense 

units=86 dense layers=2 

dropout = 0.453 

l2_lambda = 0.00069 

learning rate = 0.00018 # 

batch size = 32 dense 

units=253 dense 

layers=2 dropout = 

0.406 

l2_lambda = 0.00014 
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qubits = 3 

# layers = 8 

learning rate = 0.00014 # 

qubits = 3 

# layers = 8 

QDenseNet121 
batch size = 16 dense 

units=181 dense layers=1 

dropout = 0.443 

l2_lambda = 0.0024 

learning rate = 0.00045 # 

qubits = 3 

# layers = 9 

batch size = 32 dense 

units = 251 dense layers 

= 1 dropouts = 0.471 

l2_lambda = 0.00199 

learning rate = 0.00095 # 

qubits = 4 

# layers = 3 

QResNet50 
batch size = 16 dense 

units=196 dense layers=1 

dropout = 0.432 

l2_lambda = 0.00085 

learning rate = 0.00036 # 

qubits = 5 

# layers = 11 

batch size = 32 dense 

units = 180 dense layers 

= 1 

learning rate = 0.00041 

dropout = 0.463 

l2_lambda = 0.00039 # 

qubits = 3 

# layers = 10 

QEfficientNet-B3 
batch size = 32 dense 

units = 92 dense layers = 

2 dropouts = 0.406 

l2_lambda = 0.00016 

learning rate = 0.00006 # 

qubits = 2 

# layers = 11 

batch size = 16 dense 

units = 251 dense layers 

= 1 dropouts = 0.404 

l2_lambda = 0.00088 

learning rate = 0.00048 # 

qubits = 2 

# layers = 4 

Table 1: The optimized hyperparameters for each method. 

4.1 Evaluation of Classic and Hybrid Classic-Quantum DL Models for 

Axial MRI 

The metrics including accuracy, precision, recall, F1-score, and AUC offer 

insights into the models’ effectiveness in identifying MS-related features in 

axial MRI images (Table 2). The results reveal both the strengths of classic 

DL models and the potential of quantum- enhanced approaches with 

implications for advancing MS diagnostics. 

 

DL Models 

Classic Hybrid Classic-Quantum 

Accuracy Precision Recall F1-score AUC Accuracy Precision Recall F1-score AUC 

CNN 93.95% 93.95% 93.95% 93.94% 97.81% 93.05% 93.06% 93.05% 93.05% 96.85% 

DenseNet121 95.77% 95.77% 95.77% 95.77% 98.86% 97.28% 97.28% 97.28% 97.28% 99.13% 

EfficientNetB3 98.18% 98.20% 98.18% 98.18% 99.02% 98.18% 98.20% 98.18% 98.18% 98.14% 

ResNet50 96.97% 97.01% 96.97% 96.96% 98.69% 97.58% 97.62% 97.58% 97.57% 99.31% 

Table 2: Performance metrics of classic and hybrid classic-quantum algorithms for axial MRI images. 

Among the classic DL models, EfficientNetB3 achieved the highest 

performance, with an accuracy of 98.18%, precision of 98.20%, recall of 

98.18%, F1-score of 98.18%, and an AUC of 99.02%. This performance is 

likely due to EfficientNetB3’s compound scaling approach, which optimizes 

network architecture to capture the subtle and heterogeneous patterns of MS 

lesions. ResNet50 and DenseNet121 also performed robustly, with 

accuracies of 96.97% and 95.77%, respectively, and AUC values above 98%, 

indicating strong discriminative ability for MS-related features. In contrast, 

the CNN model showed the lowest performance (accuracy of 93.95%. AUC 

of 97.81%), suggesting that simpler architectures may struggle to model the 

complex characteristics of MS lesions. 

The hybrid classic-quantum models demonstrate varied performance relative 

to their classic counterparts. Notably, QDenseNet121 showed a significant 

improvement, with an accuracy increasing from 95.77% to 97.28% and AUC 

from 98.66% to 99.13%. Similarly, QResNet50 improved accuracy versus 

classical counterpart (from 96.97% to 97.58%) and AUC (from 98.69% to 

99.31%), indicating that quantum circuits may enhance the model’s ability 

to capture residual features critical for identifying MS-specific patterns. 

However, the QCNN model exhibited a slight performance decline (accuracy 

drops from 93.95% to 93.05%. AUC from 97.81% to 96.85%), possibly due 

to the limited capacity of the CNN architecture to leverage quantum 

enhancements effectively. Intriguingly, EfficientNetB3’s hybrid model 

shows no improvement in accuracy (98.18%) and a slight AUC decrease 

(from 99.02% to 98.14%), suggesting that its highly optimized classic 

architecture may already be near the performance, leaving little room for 

quantum contributions. 

4.2 Evaluation of Classic and Hybrid Classic-Quantum DL Models for 

Sagittal MRI 

For sagittal MRI images, the classic DL models demonstrated exceptional 

performance, with ResNet50 achieving the highest metrics accuracy, 

precision, recall, and F1-score all at 99.15%, and an AUC of 99.93% (Table 

3). This performance likely reflects ResNet50’s ability to capture deep 

residual features, which are critical for identifying MS lesions in the sagittal 

plane, where lesions may appear as irregularly shaped hyperintensities, 

particularly in the spinal cord or periventricular regions. 

 

DL Models 

Classic Hybrid Classic-Quantum 

Accuracy Precision Recall F1-score AUC Accuracy Precision Recall F1- score AUC 

QCNN 93.80% 93.80% 93.80% 93.80% 98.31% 92.95% 93.12% 92.95% 92.97% 97.82% 

QDenseNet121 98.87% 98.89% 98.87% 98.87% 99.83% 98.30% 98.35% 98.30% 98.30% 99.88% 

QEfficientNetB3 97.46% 97.52% 97.46% 97.45% 99.51% 98.30% 98.35% 98.30% 98.30% 99.32% 

QResNet50 99.15% 99.15% 99.15% 99.15% 99.93% 98.59% 98.60% 98.59% 98.58% 99.61% 

Table 3: Performance metrics of classic and hybrid classic- quantum algorithms for sagittal MRI images. 
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DenseNet121 has the next position, with an accuracy of 98.87%, precision 

of 98.89%, recall of 98.87%, F1-score of 98.87%, and an AUC of 99.83%, 

demonstrating its strength in leveraging dense connectivity to model 

complex lesion patterns. EfficientNetB3, while still highly effective, showed 

slightly lower performance (accuracy of 97.46% and AUC of 99.51%), 

possibly due to its scaling strategy being less optimized for the specific 

spatial characteristics of sagittal images. The CNN model lags behind, with 

an accuracy of 93.80% and an AUC of 98.31%, indicating that simpler 

architectures struggle to capture the nuanced features of MS lesions in this 

plane. 

The hybrid classic-quantum models showed mixed results compared to their 

classic counterparts. QDenseNet121 model slightly underperformed, with 

accuracy decreasing from 98.87% to 98.30% and AUC slightly increasing 

from 99.83% to 99.88%. This suggests that quantum enhancements may not 

significantly improve DenseNet121’s already strong performance. However, 

the AUC of QDenseNet121 (99.83%) was slightly better than classical 

counterpart (99.88%), indicating potential for better discriminative power. 

QEfficientNetB3 model showed a notable improvement in accuracy (from 

97.46% to 98.30%) but a slight AUC decrease (from 99.51% to 99.32%), 

suggesting that quantum layers enhance overall classification, but may 

slightly reduce the model’s ability to rank positive cases. QResNet50 

exhibited a performance decrease across all metrics (accuracy from 99.15% 

to 98.59% and AUC from 99.93% to 99.61%), indicating that quantum 

integration may disrupt the models finally tuned residual learning for sagittal 

images. The QCNN model also performed worse (accuracy drops from 

93.80% to 92.95% and AUC from 98.31% to 97.82%), reinforcing that 

simpler architectures may not benefit from quantum enhancements, possibly 

due to limited quantum circuit complexity. 

5 Discussion 

In this study, we investigated the detection of multiple sclerosis lesions in 

axial and sagittal MRI scans using classical and hybrid quantum-classical 

deep learning models. Given the diverse spatial and textural patterns of MS 

lesions, the adaptability of these models to such variations is critical for 

accurate diagnosis. Our comparative analysis reveals distinct performance 

trends across architectures and imaging planes, highlighting the potential and 

limitations of quantum-enhanced DL in medical imaging. 

Recent advances in deep learning have significantly improved the 

classification of MS using MRI data, with numerous studies reporting high-

performance metrics (Table 4). 

Method Dataset Performance Metrics 

(%) 

Ref 

 

 

ExMPLPQ 

MS: 

1411 MRI from 72 patients 

Healthy: 

2016 MRI from 59 subjects 

Axial 

Accuracy: 98.37 

Sensitivity: 96.46 

 

Macin et al. 

(37) 

  Specificity: 99.60 Sagittal 

Accuracy: 97.75 

Sensitivity: 95.01 

Specificity: 99.80 

 

 

 

 

MSNet 

MS 

706 MRI from 128 patients 

Myelitis 

667 MRI from 131 patients 

Healthy 

1373 MRI from 150 subjects 

 

Accuracy: 97.13 

Precision:97.23 Recall:97.22 

F1-score:97.23 

 

 

Tatli et al. (58) 

Six-layer CNN 

alongside 

stochastic 

pooling. 

MS 

676 MRI from 28 patients 

Healthy 

681 MRI from 

26 subjects 

Accuracy: 95.82 

Sensitivity: 95.98 

Specificity: 95.67 

Precision: 95.66 

F1-Score: 95.81 

 

 

Wang et al. (20) 

CNN 

featuring wavelet 

pooling. 

MS 

676 MRI from 38 patients 

Healthy 

615 MRI from 

20 subjects 

Accuracy: 98.92 

Sensitivity: 99.20 

Specificity: 98.33 

Precision: 99.20 

 

 

Ali jamaat et al. 

(21) 

 

 

 

 

 

 

 

 

D-CNN 

model inception 

V3 

DS1: 

MS 

1411 MRI from 72 patients 

Healthy 

2016 MRI from 59 subjects 

DS2: 

MS 

1263 MRI from 60 patients 

Healthy 

2016 MRI from 59 subjects 

DS3: 

MS 

1581 MRI from 20 patients 

Healthy 

2016 MRI from 59 subjects 

 

 

 

 

 

 

 

mAP (mean Average 

Precision) values: 86.20, 

93.77, 94.18, and 90.46 

for DS1. DS2. DS3. and DS4 

 

 

 

 

 

 

 

 

 

Haggag et al. 

(59) 

 DS4: 

MS 

1805 MRI from 38 patients 

Healthy 

2016 MRI from 59 subjects 
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Exemplar 

MobileNetv2. 

IMrMr. kNN 

MS 

1411 MRI from 144 patients 

Healthy 

2016 MRI from 106 subjects 

Axial: Accuracy: 99.76 

Sagittal: Accuracy: 99.48 

 

Ekmekyapar and 

Tascı (60) 

Table 4: Comparative overview of previous studies. 

Macin et al. achieved an accuracy exceeding 98.37% for axial and 97.75% 

for sagittal MRI images using ExMPLPQ, a method that integrates exemplar-

based multi-parametric Local Phase Quantization (LPQ) features with a k-

nearest neighbors (kNN) classifier [37]. This method affirmed the enduring 

effectiveness of handcrafted feature extraction in MS diagnosis. In another 

study, Tatli et al. developed MSNet, a hybrid MS classification model that 

innovatively merges deep learning (DenseNet201 and ResNet50) with 

feature engineering (NCA, ReliefF, and Chi2) and ensemble learning 

(SVM/kNN + majority voting) [58]. By extracting and refining deep features 

through transfer learning and iterative voting, the model achieved 97.13% 

accuracy, demonstrating the advantages of combining deep neural networks 

with classical machine learning techniques for medical image analysis. 

Further improvements were observed in studies utilizing CNNs with 

innovative pooling strategies, such as Wang et al. [20] and Alijamaat et al.  

[21], who reported accuracies of 95.82% and 98.92%, respectively, 

reinforcing the effectiveness of convolutional architectures in MS 

classification. Haggag et al. employed a D-CNN model based on Inception 

V3 across four datasets containing MRI scans from MS patients and healthy 

controls, achieving mean average precision (mAP) values of 86.20%, 

93.77%, 94.18%, and 90.46% for various datasets [59]. Meanwhile. 

Ekmekyapar and Tascı utilized a hybrid approach combining Exemplar 

MobileNetv2 with IMrMr feature selection and kNN, attaining accuracy 

99.76% on axial images and 99.48% on sagittal images [60]. 

In our study, EfficientNetB3 achieved the highest performance among 

classical models for axial MRI images, with an accuracy of 98.18% and an 

AUC of 99.02%. This considerable performance is attributed to 

EfficientNetB3’s compound scaling approach, which systematically 

optimizes network depth, width, and resolution to capture subtle and 

heterogeneous MS lesion patterns [61]. ResNet50 and DenseNet121 also 

demonstrated robust performance, with accuracies of 96.97% and 95.77%, 

respectively, and AUC values exceeding 98%. Their success can be 

attributed to residual learning and dense feature reuse, which enhance 

hierarchical feature extraction (49, 53). In contrast, the simpler CNN 

architecture shows the lowest performance, reflecting its limited capacity to 

model the complex lesion patterns. 

For sagittal MRI, ResNet50 excelled with near-perfect metrics (accuracy: 

99.15% and AUC: 99.93%). DenseNet121 followed closely with an accuracy 

of 98.87% and an AUC of 99.83%, leveraging dense connectivity to integrate 

multi-scale features. EfficientNetB3, while still highly effective, showed 

slightly lower performance (accuracy 97.46% and AUC 99.51%), suggesting 

its scaling strategy may be less optimal for sagittal-specific features. The 

CNN again underperformed, reinforcing the need for deeper architectures in 

MS lesion detection. 

The hybrid classic-quantum models introduce additional complexity to 

traditional deep learning architectures, resulting in varied performance 

across MRI planes and models, dependent on the classical backbone and 

imaging plane. For axial MRI, QDenseNet121 improved accuracy by 1.51% 

(95.77% → 97.28%) and AUC by 0.47% (98.66% → 99.13%), likely due to 

quantum-enhanced feature disentanglement via amplitude embedding. The 

variational quantum circuit’s non-linear transformations may refine high-

dimensional features, improving lesion separability. QResNet50 showed a 

0.61% accuracy gain (96.97% → 97.58%) and a 0.62% AUC improvement 

(98.69% → 99.31%), suggesting quantum entanglement enhances 

discriminative power for residual features. QEfficientNetB3 exhibited no 

accuracy improvement (98.18%) and a slight AUC drop (99.02% → 

98.14%), indicating its classical optimization may saturate performance. The 

QCNN model experienced a modest performance decline, with accuracy 

dropping from 93.95% to 93.05% and AUC decreasing from 97.81% to 

96.85%, suggesting that simpler classical backbones may lack the 

representational capacity to fully leverage quantum augmentation. 

For Sagittal MRI, QEfficientNetB3 improved accuracy by 0.84% (97.46% 

→ 98.30%) but slightly reduced AUC (99.51% → 99.32%), suggesting a 

trade-off between classification and ranking performance. QResNet50 and 

QDenseNet121 showed modest, possibly due to interference with pre-trained 

residual/dense features critical for sagittal lesions. QCNN model also 

underperformed in sagittal MRI, reinforcing the notion that simpler 

architectures struggle to benefit from quantum enhancements, possibly due 

to limited quantum circuit complexity and classical representational power. 

The hybrid models employed two primary quantum feature encoding 

strategies. First, amplitude embedding used in QDenseNet121 and 

QResNet50. maps classical feature vectors q∈ ℝ𝑛𝚐𝑢𝑏𝑖𝑡𝑠 to a normalized 

quantum state ∣ψ0⟩= q∥q∥2 Theoretical analyses show that amplitude 

embedding can exponentially compress high-dimensional data into quantum 

states; however, it requires O(2n) classical preprocessing, which limits 

scalability [62]. Second, angle embedding, utilized in QEfficientNetB3, 

encodes n features as qubit rotations 𝑛𝚐𝑢𝑏𝑖𝑡𝑠−1 (i)|0⟩, offering better 

scalability with complexity O(n), but it may lose some global correlations 

present in the data [63]. 

The quantum circuits incorporate parametrized rotation gates, which are 

optimized via backpropagation. These gates introduce quantum-specific 

non-linear transformations, potentially enhancing feature extraction, as seen 

in QDenseNet121’s AUC improvement for axial MRI. CNOT gates in a ring 

topology create entanglement between adjacent qubits, enabling quantum 

correlations that may capture long-range dependencies across distant image 

regions, relevant for MS detection due to lesions’ heterogeneous spatial 

distributions. This mechanism could contribute to QResNet50’s AUC gain, 

though QEfficientNetB3’s AUC drop suggests context-specific benefits 

limited by circuit design (e.g., qubit count, entanglement scope). 

Measurement of the quantum states is performed via Pauli observables ⟨σx⟩ 
and ⟨σz⟩. The ⟨σz⟩ observable encodes local qubit polarization, which is 

sensitive to lesion intensity variations, while ⟨σx⟩ captures coherence 

between lesions and healthy tissue. The classical fully connected layers then 

map the measured quantum features to output predictions, with quantum 

noise such as shot noise being regularized through dropout techniques. 

Despite these promising results, several challenges limit the clinical 

applicability of hybrid classical-quantum models. Current quantum hardware 

constraints restrict the number of qubits. impacting the dimensionality of the 

feature space that can be encoded. Additionally, clinical MRI data often 

contain artifacts. such as motion blur and partial volume effects, which can 

degrade quantum coherence and computational fidelity. Future work should 

prioritize error mitigation strategies. such as dynamical decoupling and 

probabilistic error cancellation, to enhance robustness under noisy 

conditions. Furthermore. the theoretical framework for quantum advantage 

in medical imaging remains underdeveloped, with rigorous performance 

bounds yet to be established. Future research should focus on deriving 

rigorous mathematical frameworks to quantify the conditions under which 

quantum enhancements provide measurable improvements over classical 

approaches. Addressing these challenges will be essential for translating 

quantum-based diagnostic tools from theoretical constructs into clinically 

viable solutions. 

Conclusion 

This study demonstrates that classical deep learning architectures achieve 

robust performance in MS lesion detection across different MRI planes, with 

residual and densely connected networks showing particular effectiveness. 

Hybrid quantum-classical models provide improvements, enhancing certain 

architectures through quantum-enabled feature refinement while offering no 

advantage for simpler networks. The benefits of quantum integration prove 
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highly dependent on both the base model's design and the specific imaging 

plane being analyzed. While quantum circuits show promise for medical 

image analysis through their unique feature encoding and transformation 

capabilities, their current utility remains constrained by fundamental 

limitations in scalability and noise susceptibility. Future progress in this 

emerging field will depend on co-designed quantum-classical systems. 
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