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Introduction 

Endocrine disrupting chemicals (EDCs) have been shown to have the 
potential to negatively affect neuro-development, and credible 
mechanisms have been postulated [1]. Since phthalates are a type of EDC, 
earlier reviews by Braun [1], Benjamin et al. [2], and Ejaredar et al. [3], 

have suggested a connection between phthalate exposure and a number of 
neuro-developmental outcomes, such as autism, lowered intelligence 
quotient (IQ), and impairment of both mental and psychomotor 
development. Due to the ubiquitous use of phthalates in consumer and 

 
commercial items, phthalate exposure in humans is prevalent, mostly 
through oral ingestion but also via inhalation and skin contact [4]. The 
propensity of phthalates to transverse the placenta brings up several 
questions regarding the developmental outcomes of in-utero exposure, 

especially when in combination with the potentiality for increased 
sensitivity in the unborn and child [1], according to Langonne et al. [5]. 
After exposure, phthalate diesters are quickly transformed into mono- 
esters and eliminated in the urine [4]. The half-lives of different phthalate 
metabolites are reported to be between 3 and 18 hours. 
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Abstract 

The brain is an energy demanding organ, constituting about 20% of the body's resting metabolic rate. An efficient energy 

metabolism is critical to neuronal functions. Glucose serves as the primary essential energy source for the adult brain and plays 
a critical role in supporting neural growth and development. The potential for endocrine disrupting chemicals (EDCs) such as 
phthalates to have a negative impact on neurological functions has been widely recognized. We examined the impact of 
diisononyl phthalate (DiNP) on neural energy transduction by using cellular energy metabolizing enzymes as indicators. Over 
the course of 14 days, eighteen (18) albino rats divided into three groups (1,2 and 3) of six albino rats were given Tween-80/saline, 
20 and 200 mg/kg body weight respectively. In the brain, we assessed histological changes as well as activities of selected 

enzymes of energy metabolism such as the glycolytic pathway, citric acid cycle and mitochondrial electron transport-linked 
complexes. Activities of the glycolytic enzymes assayed for were down-regulated, and the activities of the TCA cycle enzymes 
were significantly decreased (P<0.05) except citrate synthase activity with no statistically significant change following the 
administration of DiNP. Also, respiratory chain complexes (Complex I-IV) activities were significantly (P<0.05) down-regulated 
when compared to control. DiNP exposure altered the histological integrity of various brain sections. These include degenerated 
Purkinje neurons, distortion of the granular layer and Purkinje cell layer. Data from this study indicated impaired brain energy 
metabolism and altered brain histoarchitecture from DiNP exposure. 

Keywords: diisononyl phthalate; cellular respiration; glycolysis; mitochondrial electron transport complexes; oxidative 
phosphorylation; brain; rat 
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The results of a study by Polanska et al. [6] show that exposure to 
phthalates during pregnancy may be detrimental to an infant's neuro- 
development, highlighting the need for regulations and public health 
initiatives targeted at limiting this exposure. Furthermore, it is interesting 
that prenatal phthalate exposure's neurotoxicity has been extensively 
studied in animal research [7]. While some studies have revealed that some 

phthalates are detrimental to children's neuro-development [8, 9], others 
have found no significant association, a sex-specific effect, or a positive 
effect [10; 11]. The hypothalamic-pituitary-gonadal, adrenal, and thyroid 
axes are all dysregulated by phthalates, which is crucial for neuro- 
development, according to a systematic review conducted by Hlisnková et 
al. [12]. Phthalates interfere with nuclear receptors at the intracellular level 
in numerous neuronal structures, affecting brain functions and the 
development of neurological disorders. 

Diisononyl phthalate (DiNP) takes the place of other common phthalates. 
It can be found in a wide range of things, such as toys, consumer goods, 
food packaging, and building materials. DiNP is readily capable to pass 

through saliva and be eaten since it is not covalently bonded to polymers 
[13]. DiNP can enter the body through ingestion, inhalation, or skin 
absorption. The European Chemicals Bureau estimated that children are 
exposed to 200 g/kg/day of DiNP through toys [13]. Currently, there are 
limited or no study that have directly examined the role of exposure to 
DiNP on activities of neuronal energy metabolizing enzymes. Hence, this 
study utilized cellular energy metabolizing enzymes as biomarker to 
investigate the impact of DiNP on neural energy transduction. 

Materials and Methods 

2.1 Chemicals and reagents 

CYPRESS® Diagnostics from Belgium supplied the lactate 
dehydrogenase assay kit and we sourced DiNP from Relonchem Ltd. UK. 

We ensured the highest analytical quality for all additional reagents, 
chemicals and kits used. 

2.2 Animals 

Eighteen (18) albino rats, weighing between 200-230g, were procured 
from the animal breeding facility of the University of Ibadan College of 

Medicine, Ibadan. Subsequently, the rats were acclimated and subjected to 
treatment while being housed in plastic cages at the animal facility of the 
Department of Chemical Sciences, Ajayi Crowther University. 
Throughout the study, the rats had ad libitum access to water and pelletized 
food. Approval by the Faculty Committee on Animal Ethics for the use of 
these animals was granted with authorization number FNS/ERC/2021/006. 

2.3 Experimental groups 

The rats were stratified into three cohorts, each consist of six rats. Group 
A, the control group, received Tween-80. Group B received a dosage of 20 
mg/kg/BW of DiNP, while Group C was administered 200 mg/kg of DiNP 
orally (Fig. 1). The exposure lasted 14 days. The DiNP solution was 
prepared using a mixture of normal saline and Tween-80 in a 1:1 v/v ratio. 
The selection of the doses (20 and 200 mg/kg/day DiNP) was based on 
previous research findings [15, 16]. 

 

 

 

 
Figure 1: Experimental protocol (created in www.biorender.com) 

To process the rats’ brains and isolate the mitochondria, we followed the 
methodology previously outlined by Erika et al. [18]. The determination 

2.4 Organs sampling and biochemical techniques 

We adhered to guidelines established for the ethical management and care 
of laboratory animals during the handling of the rats [17]. Following the 
final dosage, the animals were euthanized, and the brain was excised while 
they were under diethyl ether anesthesia. Subsequently, the extracted brain 

was rinsed in pre-cooled KCL (1.15%), blotted dry, weighed, and 
afterwards homogenized using 10 volumes per weight (v/w) of phosphate 
buffer (0.1 M ; pH 7.4) in a potter-elevehjem homogenizer. The resultant 
homogenate was then centrifuged (10,000 g; 15 minutes; 4°C) to isolate 
the supernatant for subsequent biochemical assays. 

of hexokinase (HK) activity followed the protocol described by Colowick 
[19], while the Phosphofructokinase (PFK) activity was assessed 
following an established method of Sims and Blass [20]. Aldolase (ALD) 
activity measurement adhered to the procedure outlined by Jagannathan et 

al. [21]. The manufacturer's instructions for the LDH Kit (LABKIT) were 
followed to determine the lactate dehydrogenase (LDH) activity. Lastly, 
the determination of NADase activity followed the protocol outlined by 
Tatsuno et al. [22]. 

We employed the spectrophotometric enzyme assay method as outlined by 
Yu et al. [23] to evaluate citrate synthase activity. Using a method 

previously published by Romkina and Kiriukhin [24], the activity of 

http://www.biorender.com/
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isocitrate dehydrogenase (IDH) was assessed spectrophotometrically at an 
absorbance of 340 nm by quantifying the inhibition in NAD+. Alpha- 
ketoglutarate (α-KGD) activity was assessed using the α-KGDH Kit in 
accordance with the supplier's recommendations from BioVision 
Incorporated. To determine Malate Dehydrogenase activity, we followed 
the protocol previously outlined by López-Calcagno et al. [25]. 

To evaluate mitochondrial function, we quantified the activities of electron 
transport-linked enzymes (Complex I; NADH ubiquinone oxidoreductase, 
Complex II; succinate ubiquinone oxidoreductase, Complex III; 
cytochrome c oxidoreductase, and Complex IV; Cytochrome C Oxidase) 

in the mitochondria, following the methodology outlined by Medja et al. 
[26]. 

Furthermore, we quantified the neural total protein concentration utilizing 
the Biuret protocol as outlined by Gornall et al. [27]. This method forms a 
chelate (purple-colored) between Cu2+ ions and the protein’s peptide 
bonds which has a maximum absorbance at 540 nm. 

2.5 Histopathological analysis of brain tissue 

The fixed brain slices were dehydrated (using ethanol and xylene) and 
paraffin-embedded. Subsequently, hematoxylin and eosin (H&E) was used 
to stain them and processed for histological analysis using a Leica DM750 

camera microscope. 

2.6 Statistical analysis 

Results are shown as the mean ± standard deviation (SD). Analysis of 
variance (ANOVA) was used to evaluate the homogeneity of the group. 

Where heterogeneity was observed, Tukey's test was to distinguish 
between the groups. P-values < 0.05 were deemed significant statistically. 

Results 

3.1 Activities of neural glycolytic enzymes in rats exposed to DiNP. 

As depicted in Fig. 2, exposure to DiNP resulted in significant down- 

regulations (P < 0.05) in the activities of brain glycolytic enzymes, in 
contrast to the control group (A–E). DiNP administration at both doses (20 
and 200 mg/kg BW) led to pronounced decreases in brain hexokinase 
activity, with corresponding percentage declines of 75% and 87%, 
respectively. The activity of phosphofructokinase was also notably lower, 
exhibiting reductions of 40% and 60% relative to the control group. 
Furthermore, it was observed that both 20 and 200 mg/kg doses of DiNP 
caused substantial decreases in brain aldolase activity, with decreases of 

67% and 83%, respectively when compared with control. Enzyme activity 
of LDH was also down-regulated by 40% and 60% at 20 and 200 mg/kg, 
respectively, compared to the control. Additionally, NADase activity 
exhibited a reduction of 30% and 38% at DiNP doses of 20 and 200 mg/kg, 
respectively, in comparison to control 

 

 
 

 

 
 

Figure 2: Effect of DiNP on activities of neural glycolytic enzyme in rats: (a) hexokinase - HK, (b) aldolase - ALD, (c) lactate dehydrogenase - 
LDH, (d) phosphofructokinase - PFK, (e) NAD-nucleosidase - NADase. The data is represented as Mean ± Standard Deviation (SD) for each group 

of six rats. * denotes statistical significance (P < 0.05) relative to control while ** signifies statistical significance (P < 0.05) relative to DiNP 
(20mg/kg) group. 

 

 
3.2 Activities of neural tricyclic acid cycle enzymes in rats exposed 

to DiNP. 

Fig. 3(A–D) illustrates the impact of DiNP on the activity of enzymes 
of tricarboxylic acid cycle in rat brain. Rats administered DiNP (20 and 
200 mg/kg) did not display any discernible change in brain citrate 
synthase activity, which was statistically insignificant relative to the 

control group. However, notable down-regulations (p < 0.05) in brain 
isocitrate dehydrogenase, malate dehydrogenase activity, and alpha- 
ketoglutarate levels. Isocitrate dehydrogenase (IDH) exhibited 
reductions of 31% and 68%, malate dehydrogenase (MDH) showed 
declines of 35% and 50%, and alpha-ketoglutarate (α-KGH) levels were 
down-regulated by 75% and 85%, respectively. 
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Figure 3: Effect of DiNP on neural tricyclic acid cycle enzymes activities in rats: (a) citrate synthase - CS, (b) isocitrate dehydrogenase - IDH, (c) 
malate dehydrogenase - MDH, (d) alpha ketoglutarate dehydrogenase - α-KGDH. The data is presented as Mean ± Standard Deviation (SD) for each 
group of six rats: (a) * denotes statistical significance (P < 0.05) relative to control while ** signifies statistical significance (P < 0.05) relative to the 

DiNP (20mg/kg) group. 

 

3.3 Activities of neural electron transport chain complexes in rats 

exposed to DiNP. 

The activity levels of brain electron transport chain enzymes exhibited 

significant (P < 0.05) reductions in animals exposed to DiNP in 

comparison to the control rats (A–D). Specifically, the activity of neuronal 
complexes I - IV were notably diminished at both 20 and 200 mg/kg DiNP 
dosages, resulting in corresponding percentage decreases of 40% and 
56%, 35% and 55%, 40% and 53%, and 38% and 50%, respectively, when 

compared to the control (Fig. 4). 

 

 

 
Figure 4: Effect of DiNP on neural electron transport chain complexes activities in rats: (a) complex I - CPLX 1, (b) complex II - CPLX II, (c) 

complex III - CPLXIII, (d) complex IV - CPLXIV. The data is presented as Mean ± Standard Deviation (SD) for each group of six rats. * Denotes 
statistical significance (P < 0.05) relative to control group, while ** signifies statistical significance (P < 0.05) relative to the DiNP (20mg/kg). 
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3.4 Histopathological analysis of brain tissue 

The histoarchitecture of the brain tissue from rats exposed to DiNP (20 
and 200mg/kg) is shown in Fig. 5, 6, and 7, along with a score graph that 
depicts the degree of the damage. With a high dose of DiNP (200 mg/kg), 
neuropil distortion is shown. The neuropil appears to be fragmented, as 
shown in plates 2 and 3. Pyramidal neurons displayed pyknotic behavior 

and appeared smaller and darker. Comparing groups A (Control) and B 
(20mg/kg) to group C (200mg/kg), undamaged neurons can be found in 

much higher numbers in the various levels of the cerebellum. This is a 
warning sign for the neuro-degeneration shown at 200 mg/kg. At 
200mg/kg, the granule neurons seemed to have shrunk. Both Groups A 

and B appeared to have intact neuronal morphology. In the nucleolus of 
the undamaged neurons, the nissl material was plainly visible. Relative to 
the control group and 20mg/kg DiNP, protein integrity was clearly visible, 
demonstrating the viability of the neurons' nissl substances. 

 

 
Figure 5: Representative sections of the cerebellum stained with hematoxylin and eosin from rats exposed to DiNP. 

A connotes control group, B - 20 mg/kg DiNP group, C-200 mg/kg DiNP group, and D- neuronal cell counts. Notable regions include the molecular 
layer - ML, Purkinje cell layer - PCL, and granular layer - GL. Normal Purkinje neurons are marked with arrowheads. Arrows indicates degenerated 

purkinje neurons. * Denotes statistical significance (P < 0.05) relative to control group, while ** signifies statistical significance (P < 0.05) relative to 
DiNP (20mg/kg) group 

 

Figure 6: Representative sections of the prefrontal cortex stained with hematoxylin and eosin from rats exposed to DiNP. 

A connotes control group, B- 20 mg/kg DiNP group, C - 200 mg/kg DiNP group, and D- neuronal cell counts. Highlighted are dark pyramidal neurons 

(arrows) and normal pyramidal neurons (arrowheads). * Denotes statistical significance (P < 0.05) relative to control group, while ** signifies statistical 
significance (P < 0.05) relative to DiNP (20mg/kg) group. 
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Figure 7: Representative sections of the hippocampus stained with hematoxylin and eosin from rats exposed to DiNP. 

A connotes control group, B - 20 mg/kg DiNP group, C- 200 mg/kg DiNP 
group, and D- neuronal cell counts. Regions of interest include the stratum 
oriens - SO, stratum pyramidalis - SP, and stratum radiatum - SR. 
Arrowhead indicated normal pyramidal neurons. Arrows connotes dark 

pyramidal neurons. * denotes statistical significance (P < 0.05) relative to 
control group, while ** signifies statistical significance (P < 0.05) relative 
to DiNP (20mg/kg) group. 

Discussion 

Despite making up only 2% of total body weight, the brain is an 
"expensive" organ that contributes about 20% to resting metabolic rate of 
the body. The main required energy source for the adult brain is glucose, 

which is also crucial for the developing brain. Locally, rate of blood flow 
(to remove waste products and supply fuel), metabolic demand, and brain 
activity are all intimately connected. The blood flow rate to neural tissue 
increases with increased cellular activity associated with the particular 
brain function (e.g. processing information as a result of sensory 
stimulation or mental computations), which also increases the local 
demand for ATP [28]. Reduced activity, on the other hand, reduces blood 
flow and glucose and oxygen consumption. Both oxygen and glucose, 

which are essential for the growth and maintenance of the brain in both 
children and adults, must be continuously supplied to the brain. 
Transporters in endothelial cells, whose close connections make up the 
blood-brain barrier, take up substances utilized by the brain from the 
circulation [29]. 

Specialized transporters located in endothelial cells, which create the tight 

junctions of the blood-brain barrier, transport substances that cross the 
barrier from the bloodstream[29]. Examples of these transporters include 
the monocarboxylic acid transporter (MCT) and the glucose transporter 
(GLUT) [30]. Notably, the brain exhibits a high reliance on ketone bodies 
for energy utilization during the suckling period, as well as for serving as 
a carbon source in lipids, amino acids, and proteins synthesis, in contrast 
to pyruvate dehydrogenase and certain oxidative enzymes that display 
lower activity [30]. After birth, glycolytic and oxidative enzyme activity 
steadily increases with maturation and reaches adult levels soon after 

weaning [32]. An increase in oxidative glucose utilization has been linked 
to the proliferation of transporters on the blood-brain barrier [33]. These 
changes are also in line with gradually rising levels of enzymes involved 

in oxidative metabolism in the brain as well as rising activity of malate- 
aspartate shuttle enzymes [34]. As the brain develops, it consumes more 
glucose for energy, which is then converted into more pyruvate via the 
TCA cycle. This study provides the initial insights into the inhibitory 

impact of DiNP on enzymes associated with the glycolysis and oxidative 
phosphorylation. 

The first critical point in controlling the pace of glucose metabolism in the 
brain is the glucose phosphorylation by hexokinase, which is considered 
an irreversible process; phosphofructokinase is the second important 

regulatory enzyme [35]. The brain commits glucose for use in the first 
stage of glycolysis. According to the results of this study, the experimental 
animals' exposure to 20 and 200 mg/kg DiNP considerably reduced their 
hexokinase activity compared to the control group. This demonstrates 
how DiNP inhibits brain glucose uptake by lowering hexokinase activity, 
which prevents glucose from being readily available for the glycolytic 
pathway. Fructose-6-phosphate and Mg-ATP are also the main and most 
intricate sources of energy for Phosphofructokinase-1, the main regulatory 

enzyme in responsible for regulating glycolysis [35]. It is basically 
irreversible, similar to other regulatory reactions. The delivery of DiNP 
significantly decreased PFK-1 activity, according to this experiment. 
Aldolase, a crucial glycolytic enzyme, plays a pivotal role in cleaving 
fructose 1-6-diphosphate to glyceraldehyde 3-phosphate and dihydroxy-
acetone phosphate within the glycolytic metabolic pathway [36]. Previous 
studies have shown that Di[2-ethylhexyl] phthalate, a type of phthalate, 
did not exhibit any inhibitory effects on aldolase activity [37]. In contrast, 

our current study reveals that DiNP dose-dependently suppresses aldolase 
activity. It is important to note that the activity of PFK-1, an enzyme 
responsible for converting fructose 6-phosphate into fructose 1,6-
bisphosphate (a required substrate for aldolase), has been down-regulated. 
Consequently, the readily available substrate for aldolase which is 
fructose-1-6-diphosphate, has decreased [38]. 

Furthermore, within the glycolytic pathway, the cytoplasmic NADH 

generated through the activity of glyceraldehyde-3-P dehydrogenase 
undergoes oxidation facilitated by LDH (a bidirectional enzyme). This 
LDH-mediated process is essential for the seamless progression of 
glycolysis [16]. The malate-aspartate shuttle activity is also indispensable 
to sustain the conversion of lactate into pyruvate, along with the 
generation of NADH + H, which subsequently serves as a vital oxidative 
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fuel source. When O2 becomes scarce, glycolytic ATP synthesis can 
continue and even speed up since LDH in the brain functions in aerobic, 
hypoxic (low oxygen), anaerobic (zero oxygen), and ischemic (no blood 
flow) situations [32]. The amount of glucose that is converted to pyruvate 
or lactate in the presence of "sufficient" oxygen and without oxygen, 
respectively, is referred to as aerobic or anaerobic glycolysis. When the 

rate of aerobic glycolytic flux surpasses the capacity for pyruvate 
oxidation or the transport of NADH equivalents to the mitochondria, 
lactate production occurs. Since the utilization of lactate relies on its 
availability and transport through equilibrium mechanisms, it is 
considered an 'opportunistic' energy source. In cultured astrocytes and 
neurons, lactate is quickly taken in and oxidized, and oligodendroglia cells 
can use only a little of it for energy and lipid synthesis. [39]. A small 
amount of lactate serves as an energy source and contributes to lipid 

synthesis in oligodendroglia cells, while cultured astrocytes and neurons 
readily take up and oxidize it [39]. However, the results of this study 
indicate that DiNP, administered at both 20 and 200 mg/kg doses, 
significantly decreased LDH activity compared to the control group, 
thereby reducing the availability of this opportunistic energy source in the 
brain. 

NADase, belonging to the hydrolase enzyme family, is responsible for 
hydrolyzing N-glycosyl compounds. It plays a role in nicotinate and 
nicotinamide metabolism, as well as in the calcium signaling pathway 
[40]. In cellular oxidation-reduction (redox) reactions, NAD+ and flavin 

adenine dinucleotide (FAD+) are crucial in capturing high-energy 
electrons and delivering them to the ETC to produce adenosine 
triphosphate (ATP). [41]. Numerous metabolic processes such as 
including fatty acid oxidation, glycolysis, the Krebs cycle, rely on NAD+ 
as a cofactor for various enzymes [42]. Given that NAD+ is an essential 
cofactor for enzymes involved in both glycolysis and TCA/ETC 
processes, the reduced NADase activity resulting from DiNP 
administration at doses of 20 and 200 mg/kg may impede these pathways. 

Consequently, this limitation in energy supply for brain functions could 
potentially disrupt these essential metabolic processes 

The Krebs cycle, also recognized as the citric acid cycle, plays a 
fundamental role in glucose metabolism by transferring reducing 
equivalents to NADH and FADH2. These compounds collaborate with 
ETC to generate ATP and regenerate oxidized redox molecules. The TCA 
cycle accounts for the majority of ATP production from glucose 
metabolism. The initiation of oxidative metabolism occurs when 
pyruvate, derived from glycolysis, enters the mitochondrion and 
transforms into acetyl CoA. The TCA cycle is indispensable for energy 
generation, amino acid synthesis, and neurotransmission [43]. It 

commences with the transfer of a two-carbon acetyl group from Acetyl- 
CoA to a four-carbon acceptor molecule called oxaloacetate, facilitated 
by citrate synthase. This reaction leads to the formation of a six-carbon 
compound referred to as citrate. Importantly, the brain, like other tissues, 
hosts two isoforms of isocitrate dehydrogenase (IDH): the cytoplasmic 
NADP+-dependent IDH and the mitochondrial NAD+ - dependent IDH. 
The NAD-linked enzyme is allosterically regulated, with ATP and NADH 
inhibiting it, while ADP activates it. It catalyzes an essentially irreversible 
process involving the dehydrogenation of isocitrate to form 

oxalosuccinate [44]. Citrate synthase activity in our study remained 
unaffected by DiNP exposure (20 and 200 mg/kg), indicating the 
availability of the initial substrate required for the TCA cycle. However, 
IDH was found to be inhibited following DiNP administration. 

The decreased activity of IDH as a result of DiNP exposure will diminish 
the cycle's role in energy production, resulting in reduced energy delivery 
to the brain. Malate dehydrogenase (MDH) catalyzes the reaction that 

converts of malate to oxaloacetate in the Krebs cycle. This reaction 
involves the oxidation of the hydroxyl group on malate and the reduction 
of NAD+. The cytosolic isoform of MDH contributes to the ETC as an 

electron donor, facilitating ATP production [45]. MDH exists in both 
mitochondrial and cytosolic isoforms. Alpha-ketoglutarate (α-KG) exerts 
significant influence over cellular energy utilization. It participates in 
multiple metabolic pathways, including its synthesis and breakdown. At 
a pivotal control point in the TCA cycle, α-KG undergoes decarboxylation 
by α-KG dehydrogenase to form succinyl-CoA and CO2. It is well- 
established that astrocytes convert glutamate into alpha-ketoglutarate to 
supply lactate, primarily derived from the Krebs cycle, to neurons [46]. 

Our investigation revealed that DiNP dramatically reduced MDH activity 
and the level of α-KG in a dose-dependent manner 

Reducing equivalents, carried by molecules like NADH and FADH2, are 
transferred to the ETC either at complex I or II, while H+ ions are expelled 

across inner mitochondrial membrane. This process establishes a proton 
gradient that leads to the production of ATP. Notably, when protons enter 
the ETC through complex II, as opposed to CPLX I, fewer protons are 
ejected, resulting in a reduced ATP output. This method directly connects 
energy production to energy consumption since biological processes 
ultimately use ATP to produce ADP, the necessary precursor for the ETC 
[16]. 

The ETC comprises Complexes I- IV. The tricarboxylic acid (TCA) cycle 

generates a proton-motive force by utilizing electrons from NAD+ and 
FAD-linked enzymes, which is subsequently employed for ATP 
production. Specifically, electrons originating from FAD-linked SDH 
move from CPLX II to CPLX III through ubiquinone, while electrons 
from CPLX I directly enter CPLX III [47, 48]. This study represents the 
first investigation into the down-regulatory effects of DiNP on neural 

CPLX I, II, III, and IV of the ETC. 

The results indicate that DiNP led to dose-dependent reductions in the 
activities of each complex. Prior research has shown that exposure to 
DEHP, a phthalate, resulted in decreased SDH activity [49]. Similarly, 
environmental pollutants such as benzyl butyl phthalate (TDI) and 
diphenylmethane diisocyanate (MDI) have been associated with reduced 
SDH activity and alterations in energy metabolism [50, 51]. The ETC uses 
NADH and FADH2, which are produced during glycolysis, oxidation, and 
other catabolic processes, to produce ATP. The down-regulated activities 

of the ETC complexes observed in rats exposed to DiNP demonstrate the 
inability of the brain to convert products of the glycolytic and TCA cycle 
into ATP. This explains why the ETC complexes were down-regulated. 

The fact that neurons heavily rely on oxidative energy metabolism has 
suggested a unified histology mechanism of neuron degeneration based 
on studies of the underlying defective mitochondrial energy metabolism. 
It is not surprising that many mitochondrial disorders are encepha- 
cardiomyopathies given that the brain, heart, and skeletal muscles are 
among the body parts most dependent on energy [52, 53]. 

The reported results of DiNP inducing the pyramidal neurons to be 
pyknotic and shrunken, which is indicative of neuronal degeneration, 
reflect the emphasis given to mitochondrial failure as an executor in 
neural degeneration. In addition to the initial loss of ATP caused by the 
DiNP insult, the mitochondria's inability to produce the required energy 

has catastrophic effects on downstream systems like brain functioning and 
signaling. It is evident that a variety of neurodegenerative illnesses have 
impaired or inhibited mitochondrial energy metabolism as a major 
pathogenic component. 
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Figure 8: Mechanistic overview of the impact of DiNP on (a) neural glycolytic pathway, (b) neural citric acid cycle and (c) neural mitochondrial 
electron transport chain. (created at www.Biorender.com) 

Conclusions 

It has been established that exposure to DiNP, a class of phthalates, is an 
endocrine disrupting substance. Data from this study showed that DiNP 
down-regulates neural glycolytic and mitochondrial metabolizing 

enzymes, which greatly perturbs the activities of enzymes involved in 
energy transduction in the brain. 

Highlights 

▪ Diisononyl phthalate (DiNP) downregulate the activities of neural 
glycolytic enzymes in rat 

▪ DiNP caused significant decrease in activities of tricarboxylic acid 

cycle enzymes 
▪ DiNP also downregulate the activities of electron transport 

complexes 
▪ DiNP also caused alteration in brain histoarchitecture 
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