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Abstract 

A protein can be represented by its primary, secondary, or tertiary structure. With recent advances in AI, there is now as 

much tertiary as primary structural data available. Fast and accurate search methods exist for both types of data, with 

searches over both representations being highly precise. However, primary structure data can sometimes be incomplete. 

As a result, tertiary structure has become the gold standard for remote homology detection. 

How does secondary structure perform in remote homology detection? Secondary structure interprets proteins as a 

sequence using an alphabet representing helices, strands, or loops. It shares its sequential nature with primary structure 

while retaining topological information similar to tertiary structure. 

To assess the effectiveness of secondary structure in remote homology detection, we devised a challenging classification 

task aimed at determining the superfamily membership of very distantly related protein domains. We used benchmarks 

from the CATH and SCOP databases and evaluated sequence and structure alignment algorithms on primary, secondary, 

and tertiary structures. As expected, both basic and advanced sequence alignment algorithms applied to primary structure 

achieved high precision, but their overall area under the curve was lower compared to the gold standard of structural 

alignment using tertiary structure. 

Surprisingly, a simple string comparison algorithm applied to secondary structure performed close to the gold standard. 

This result supports the hypothesis that key structural information is already encoded in secondary structure and suggests 

that secondary structure may be a promising representation to use when high-confidence structural data is unavailable, 

such as in cases involving protein flexibility and disorder. 

Keywords: homology detection; protein flexibility and disorder 

Introduction  

The primary structure represents proteins as sequences of amino acids, while 

the tertiary structure provides a set of atomic coordinates of these amino 

acids, which form helices, strands, or loops in 3D space. The secondary 

structure serves as an intermediate representation, capturing helices, strands, 

and loops in a sequential format. Generally, tertiary structure is more 

conserved than pri- mary structure, as functional requirements impose 

constraints on a protein’s structure, whereas the sequence itself can mutate 

as long as essential functions are preserved [1]. As a result, dissimilar 

sequences may fold into similar struc- tures that are homologous in function 

[2, 3]. Functional constraints often apply only to specific regions of the 

protein rather than the entire structure, and a substantial portion of the protein 

sequence can undergo significant variation as long as the core structure, 

which satisfies functional requirements, remains intact [4]. Consequently, 

primary structure alignment tools like BLAST [5] and HHblits [6] are highly 

precise in remote homology detection, but they are not complete for the 

reasons mentioned above. On the other hand, tertiary structure serves as a 

gold standard, offering both precision and completeness [3]. 

In contrast to sequence alignments, naive structural alignments performed by 

tools like TM-align [7] and CE-align [8] are computationally intensive, as 

these algorithms determine similarity by finding an optimal superposition of 

atomic coordinates. Such methods are not suitable for searching large struc- 

tural repositories, such as the AlphaFold database [9] or the ESM 
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Metagenomic Atlas [10], which contain hundreds of millions of structures. 

Therefore, 3D fins- gerprints have been developed and implemented in the 

structure search engine Foldseek [11]. These 3D fingerprints represent 

proteins as sequences over an abstract alphabet, capturing local information 

about the atoms’ coordinates and interactions. In summary, fast and accurate 

searches over primary and tertiary structures are available with BLAST and 

FoldSeek, respectively. The former is highly precise in detecting remote 

homologs, while the latter is both precise and complete. 

How does secondary structure perform in homology detection? Does it share 

the precision of BLAST but fail to retrieve all remote homologs, or does its 

abstract representation hold sufficient structural information to perform as 

well as tertiary structure? The latter hypothesis is supported by Przytycka et 

al., who explored the extent to which a protein’s secondary structure could 

inform its three-dimensional fold by analyzing known protein structures 

[12]. They constructed a taxonomy based solely on secondary structure, 

proposing a simple mechanism of protein evolution [12]. Fontana et al. and 

Guharoy et al. found that secondary structure is sufficiently conserved to 

compute align- ments of protein secondary structures against a library of 

domain folds [13] and to identify binding motifs in protein-protein 

interactions, respectively [14]. A concrete example of the conservation of 

secondary structure is the superfam- ily of single-strand annealing proteins, 

which comprises five distantly related families, all sharing a secondary 

structure motif of a β-hairpin flanked by two helices and a β-sheet with a 

perpendicular helix [15] (see Figure 1). 

In addition to the conservation of secondary structure, a second reason for its 

effectiveness is that very fast sequence alignment algorithms can be applied 

to secondary structure, a key factor in the fast structure search capabilities of 

FoldSeek using 3D fingerprints. 

To answer the question of how secondary structure compares to primary and 

tertiary structures in remote homology detection, we focus on a challenging 

task: determining superfamily membership for a non-redundant set of struc- 

tural domains from the CATH and SCOP domain databases. Non-

redundancy refers to sequence similarity, making this task naturally difficult 

for sequence algorithms based on primary structure. For all three 

representations, we mea- sure the similarity of domain pairs from the same 

superfamily versus those from different superfamilies. We aim to determine 

whether the performance of alignments based on secondary structure is 

closer to the gold standard of tertiary structure or to the highly precise but 

incomplete primary structure. 

2. Results and Discussion 

Secondary structure alphabet 

Secondary structure is an abstraction of 3D structure. In 3D, the connection 

between two consecutive amino acids is described by two angles, known as 

the phi and psi angles. These angles cannot adopt all theoretical 

combinations but instead cluster around certain values. These clusters lead 

to the assignment of secondary structure to a residue. Depending on the 

clustering, the secondary structure can be represented using a more 

restrictive or a less restrictive alpha- bet. Typically, two representations are 

used: a 3-letter alphabet (helix, strand, loop) and an 8-letter alphabet (which 

includes three types of helices 310-helix, α-, and π-helix—strand, loop, and 

three additional letters for specialized turns, strands, and coils). We compare 

both representations to determine whether the increased granularity of the 8-

letter alphabet leads to improved performance. 

 

 

Figure. 1: Diagram illustrating the secondary sequence alignment between Rad52 and Redβ as an example from 

SSAPs. 

 

 CATH SCOPe40 CATH S20 

Redundancy None 40% 20% 

Domains 23,911  11,160 14,907 

Pairs 285,856,005 62,267,220 111,101,871 

Superfamilies 1,075 1,954 3,288 

Pairs in the same Superfamily 6,348,666 (2.2%) 225,931 (0.36%) 582,578 (0.52%) 

Pairs in different Superfamilies 279,507,339 62,041,289 110,519,293 

 

Benchmark datasets 

To compare primary, secondary, and tertiary structures, we employed a 

chal- lenging classification task. We compared scores within predefined 

domain superfamilies and between distinct superfamilies, where the former 

should yield better scores. The two principal databases for structural 

domain classification are CATH [16] and SCOPe [17], which organize 

protein domains by topology at the family and superfamily levels. We 

included both databases and varied the degree of redundancy in our 

datasets. A non-redundant dataset is more challenging, especially for 

sequence-based methods, but also more realistic for scenarios involving 

remote homology detection, where little prior knowl- edge exists. 

Therefore, we devised three datasets: CATH (with redundancy), 

SCOPe40 (non-redundant at 40% sequence similarity), and CATH S20 

(non- redundant at 20%). Each dataset covers over 1,000 superfamilies 

and more than 10,000 individual domains. The number of pairs ranges 

from 62 to 286 million, with the number of pairs within the same 

superfamily being a small fraction of those between different 

superfamilies (see Table 1), ranging from 0.36% to 2.2%. This 

classification task is highly unbalanced, reflecting the task of remote 

homology detection, where the vast majority of relationships are 
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negative. The ratio of positive to all pairs in the two non-redundant 

datasets, SCOPe40 and CATH S20, is an order of magnitude smaller than 

in the redun- dant dataset, CATH, highlighting the increased difficulty of 

these datasets for the algorithms. 

Algorithms. 

The Levenshtein distance [18] is the most basic sequence comparison 

algorithm, computing the minimal number of insertions or deletions 

necessary to con- vert one sequence into another. For comparing 

secondary structure sequences, we used the Levenshtein distance with 

one modification: we normalized it to account for substantial variations 

in sequence length (see Methods). The Lev- enshtein distance also forms 

the basis for advanced algorithms like BLAST, which uses an enhanced 

scoring scheme for gaps and mismatches and is opti- mized for speed. 

While BLAST is the standard method for amino acid sequence 

comparison, specialized approaches optimized for remote homology 

detection exist, such as those using hidden Markov models (HMMs). 

HMMs generate a statistical representation of a protein family, which is 

more robust than individ- ual sequences. A widely used HMM 

implementation is HHblits [6]. For tertiary structure, the most widely 

used comparison method translates 3D structures into 3D fingerprints, 

sequences that can be interpreted as high-dimensional vectors, allowing 

for very efficient comparison methods. An example of such an approach 

is Foldseek [19]. However, since these methods aim to approximate the 

slower, optimal superposition of atomic coordinates, we used TM-align 

[20] as a reference and gold standard.  

In summary, we compared primary structure using basic BLAST and 

advanced HHblits methods, secondary structure using a normalized 

Leven- shtein distance with 3-letter and 8-letter alphabets, and tertiary 

structure using TM-align. These were applied to the three benchmark 

datasets: CATH, SCOPe40, and CATH S20. 

Secondary structure’s performance is closer to tertiary’s than to 

primary’s 

Primary, secondary, and tertiary structures achieved AUCs of up to 84%, 

95%, and 98%, respectively, across the three benchmarks and varying 

setups (see Table 2 and Figure 2). This indicates that a basic sequence 

alignment algorithm, such as the Levenshtein distance applied to 

secondary structure, significantly outperforms both basic and advanced 

algorithms on primary structure and approaches the performance of 

tertiary structure.  This sug- gests that the topological information 

embedded in secondary structure can be effectively utilized, even with 

simple alignment algorithms. 

Non-redundant datasets are consistently more challenging 

The more non-redundant a dataset is, the fewer “easy” remote 

homologues exist, making the dataset more challenging. Surprisingly, 

this is true not only for algorithms that explicitly leverage redundancy, 

such as HHblits, but also for secondary and tertiary structure-based 

methods. 

Performance of HMMs increases with the amount of sequences 

HMMs capture a statistical signature of a sequence family, making them 

more effective for remote homology detection than basic sequence 

comparison. As a result, HMMs consistently outperform BLAST, 

especially as more sequence data becomes available. For instance, 

HMMs achieved 84% AUC on the CATH dataset, compared to 51% for 

BLAST on the highly redundant CATH S20. This demonstrates the 

effectiveness of HMMs in leveraging large sequence datasets. The recent 

success of embeddings computed from large language models for amino 

acid sequences [21, 22] builds on this effect. 

TM-Score is a gold standard 

Structural alignment of tertiary structures across the full CATH dataset 

nearly perfectly classifies (98%) domain pairs as remote homologues or 

not. However, its performance drops by 8% with reduced redundancy. 

One reason for this is that remote homologues can vary in structure, and 

structural flexibility can affect alignment accuracy. 

The Secondary structure alphabet does not affect classification 

One might assume that a more detailed representation of secondary 

structure would lead to improved results, but this is not the case.  The 

AUC results are nearly identical for both the 3-letter and 8-letter 

representations. This is because, unlike amino acid alphabets, where 

large differences in frequencies can be attributed to physicochemical 

properties (e.g., the rarity of cysteines form- ing disulfide bonds), such 

specific roles are not ascribed to the more detailed secondary structure 

descriptions of the 8-letter alphabet (see Supplementary Material, Note 

1). 

Secondary structure performs nearly as well as the gold standard 

On the CATH dataset, secondary structure achieved an AUC only 3% 

lower than the tertiary structure gold standard. For the most difficult 

benchmark, this margin increases to 9%. However, compared to HMMs, 

which perform 32% worse than the gold standard, this is a remarkable 

result.  

Substitution matrices with local alignment have potential 

To explore whether the 9% gap can be further reduced, we turned to more 

advanced sequence comparison algorithms. The Levenshtein algorithm 

does not employ scoring with varying gap penalties or consider likely 

versus unlikely.  

 

Structure Methods CATH SCOPe40 CATH S20 

Primary (amino acid) BLAST 0.66 0.56 0.51 

 HHblits 0.84 0.77 0.58 

Secondary (SS string) Levenshtein with 3-

letter 

0.95 0.89 0.81 

 Levenshtein with 8-

letter 

0.95 0.90 0.81 

Tertiary (3D) TM-score 0.98 0.95 0.90 

 

Table 2: Performance (AUCs) comparison of different methods on CATH, SCOPe40, and CATH S20 datasets.  

mismatches. However, even though secondary structure lacks the fine 

granu- larity of primary structure, differences exist—for example, helix 

residues are more likely to be replaced by loop residues than by strand 

residues. This was observed in [23], where a scoring scheme for 

secondary structure was developed. To this end, we created two 

substitution matrices for secondary structure, inspired by BLOSUM [24]. 

Using high-quality multiple sequence alignments from PFAM [25], we 

mapped the amino acids to the corresponding secondary structure letters 

and computed substitution frequencies. The result- ing secondary 

structure substitution matrix was used in a local alignment with the 

Smith-Waterman algorithm. On the challenging CATH S20 dataset, this 

approach improved performance by 5%, from 80% to 85%, narrowing 

the gap to the gold standard from 9% to 5% (see Supplementary Material, 

note 2 and note 3). 

Setting a threshold for secondary structure 
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In this study, we focused on comparing representations for which AUC 

is an adequate measure. However, to make practical use of secondary 

structure in homology detection, it is crucial to assess the likelihood of a 

score and establish a threshold. We utilized Bayes’ Theorem to calculate 

the posterior probabilities of protein pairs belonging to the same 

superfamily based on their secondary structure alignment scores, 

providing a probabilistic framework for interpret- ing these scores within 

the context of our dataset [26] (see Methods). The groups exhibited 

different secondary structure score ranges, with some over- lap between 

0.5 and 0.7. Protein pairs within the same superfamily generally had 

higher alignment scores, predominantly within the 0.6 to 1.0 range. For 

further details, see Supplementary Material, Note 4. 

 

Figure 2: This figure presents the true positive rate (TPR) against the false pos- itive rate (FPR), along with their corresponding AUC 

values, for (A) CATH, (B) SCOPe40, and (C) CATH S20. The AUC plot compares the performance of tertiary structure alignment with 

TM-align and secondary structure with Levenshtein using sequences in its 3-letter representation.” SS scores” refer to secondary structure 

alignment scores, and” SF” pertains to the superfamily. The violin plots show how the secondary structure approximates the informa- tion 

of the tertiary structure in separating proteins that belong to the same superfamily (Same SF) and those in different superfamilies 

(different SF). 

3. Methods  

Data collection 

CATH version 4.3.0 and SCOPe version 2.07 were used. To maintain a 

fair com- parison, we kept proteins with lengths between 50 and 250, 

representing most of the domains. To narrow our dataset further, we only 

considered domains with a single selection range and had the correct 

selection range of residues in CATH with superfamily classification. This 

resulted in a benchmark of 23,911 domains. The non-redundant sets of 

CATH S20 and SCOPe40 were fully con- sidered without filtering; see 

Table 1. Secondary structures for these domains were extracted using 

Pymol (v 2.2.0 Open-Source) for the Cα atoms only. 

Substitution matrix for secondary structure: 

For the development of the substitution matrix, Pfam-A Seed alignments 

were used (downloaded 23/04/24) [25]. These were filtered to only 

include sequences for which AlphaFold structures existed and the 

alignment ranges matched. This resulted in 19,226 alignments of a total 

of 1,155,996 sequences. Secondary structures for these sequences were 

extracted again as above. In accordance with the original BLOSUM 

authors [24], the alignments were then trimmed to remove columns 

containing gaps, leaving 2,460,186 ungapped columns. 

With the data prepared, we apply the same steps as for BLOSUM. Firstly, 

pairwise frequencies fij are counted for all columns and all pairs ij. Next, 

the observed probability qij is calculated as the frequency of a pair ij,  

relative to the number of all pairs: 

4.Conclusion 

The representation of proteins is an intriguing and open-ended question, 

with the answer depending on the specific purpose and requirements of 

the represen- tation. Until recently, there was a trade-off: representing 

proteins as primary structures allowed for a wealth of data and fast 

algorithms, which was not the case for tertiary structures. However, with 

the advent of AlphaFold and related systems, there is now a comparable 

amount of structural data, and with the development of FoldSeek, 

structural representations are also amenable to fast structural searches. 

As a result, fast and accurate remote homology detection is now possible, 

leveraging tertiary rather than primary structures. 

While this question seems practically settled, one aspect remains open: 

how does secondary structure perform in remote homology detection? 

Secondary structure shares the sequential nature of primary structure and 

the topological information of tertiary structure. In this work, we address 

this question and report the surprising result that simple sequence 

comparison of three-letter secondary structure performs nearly as well as 

tertiary structure in distin- guishing domains from the same superfamily. 

Moreover, secondary structure offers an advantage that tertiary structure 

lacks: flexibility in tertiary struc- ture can make similarity detection 

difficult for structure alignment algorithms, whereas secondary structure 

is robust against such variations. Therefore, sec- ondary structure is a 
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promising representation that should be considered when dealing with 

3D protein structures. 

5. Data Availability 

The secondary structure strings, SS scores, TM scores, and superfamily 

memberships are available at the following link:  

https://sharing.biotec.tu-dresden.de/index.php/s/eKaamoJtTJPLbJk 
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Supplementary Material 

Supplementary Note 1: 

 

 
 

Figure. S1: The frequency of each letter in the 8-letter representation secondary structure according to the DSSP method. (a) CATH 

dataset (b) SCOPe40 

Supplementary Note 2: 

The likelihood of replacement for three secondary structure letters (S, H, L) in CATH and SCOPe40  

 

Figure. S2: Substitution counts for letters in CATH (A) and SCOPe40 (B) datasets. ’H’ represents helices, ’S’ represents sheets, ’L’ represents 

loops, and ’I/D’ stands for insertion/deletion events. The ¡=¿ symbol indicates bidi- rectional substitution. In both panels (A) and (B), the left 
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figures show substitution counts between ’H’, ’S’, and ’L’, while the right figures display substitution counts among ’H’, ’S’, ’L’, and 

insertions/deletions. 

Supplementary Note 3: 

Custom substitution matrix for secondary structure derived using log-odds ratios from Pfam-A Seed alignments 

 

 H S L 

H 2   

S -7 3  

L -16 -5 4 

 

Table S1: Pairwise substitution values used in the Smith-Waterman alignment algorithm for SS strings. 

(a)                                       (b) 

 H S L   H S L 

H 1    H 2   

S -7 4   S -8 3  

L -16 -3 4  L -16 -5 4 

(c)                                              (d) 

 H S L   H S L 

H 2    H 2   

S -7 3   S -7 3  

L -16 -5 4  L -16 -5 4 

 

Table S2: In order to verify the robustness of the matrix, we re-calculated 

the matrix for smaller sample sizes, of a) 500, b) 1,000, c) 5,000 and d) 

10,000 alignments, that were randomly sampled from the full Pfam-A 

Seed alignment set. As can be seen from a) and b) for smaller sample 

sizes, there are minor deviations of magnitude up to 2 in a) and 1 in b) 

respectively, however for a sample size of 5,000 the substitution matrix 

values match the default matrix’s values, such that it is safe to assume 

our matrix to be robust.  We ran a similar experiment to test robustness 

against sequence similarity, where matrices were computed using only 

alignments of maximum pairwise similarity of 20%, 45%, 50%, 62%, 

80%, and 90% respectively. All of these matched the original matrix, 

which is not surprising since domains are considered to have structurally 

conserved motifs

. 

 

Figure. S3: True Positive Rate (TPR) vs. False Positive Rate (FPR) and cor- responding AUC values for CATH S20 (A) and SCOPe40 (B), 

using a local alignment with a customized substitution matrix. We set the penalty for replacing ’S’ with ’L’ or ’H’ with ’L’ (i.e., -0.5) lower 

than for replacing ’S’ with ’H’ or vice versa, which was set at -1 (see Methods). This customization was driven by the observed distribution 

of replacements between these letters. Here, we used an alternative Needleman-Wunsch algorithm [15] for local align- ment. These 

modifications improved performance in CATH from 81% to 84% and slightly enhanced performance in SCOPe from 89% to 90%.  

Supplementary Note 4: 

Further Statistical Analysis 

We calculate the conditional probability for a given secondary structure 

align- ment score (SS score) of protein pairs being in the same 

superfamily. For an SS score below 0.6, the probability of a protein pair 
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belonging to the same superfamily is close to 0; this is the case for only 

a few pairs. However, we can also observe that for an SS score above 0.8, 

that probability increases sharply to around 50%. Around the score of 

0.85, we observe a clear phase transi- tion. There are also a few 

unexpected spikes or respective drops, especially for 

 

 
Figure S4: The posterior probabilities of SCOPe domain pairs for a given secondary structure score being in the same superfamily (red) or 

different superfamilies (blue). Both lines cross at around 0.85. 

SS scores around 1.0, but these are rather outliers and can be explained by 

anomalies in and the reduced size of the dataset. Nonetheless, this phase tran- 

sition points at a possible threshold of 0.85, indicating that two proteins can 

be expected to be in the same superfamily or superfamilies. The same proce- 

dure is done on the TM score in our data, and as was underlined in previous 

studies [31], the threshold of 0.5 is optimal for superfamily classification, 

figure below. We also performed the same analysis on the SCOPe dataset 

and for several methods, i.e., TM score and SS score using a 3-letter 

secondary struc- ture assignment, consisting of a three-letter alphabet, and 

the DSSP secondary structure assignment, consisting of an eight-letter 

alphabet [32, 33]. 
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