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Abstract 

Autism Spectrum Disorder (ASD) as a condition with elusive neural underpinnings has been identified as a major 

psychiatric disorder. This study leverages resting-state fMRI (rs-fMRI) data from ASD individuals and typical controls 

(TC) to enhance diagnostic precision. Following some comprehensive preprocessing steps, the GraphVar toolbox was 

utilized for machine learning analysis and classification. The preprocessing steps covered fMRI data from 184 

individuals (79 with ASD, 105 TC) via the dpabi toolbox. Among the subjects, only individuals with autistic disorder 

were chosen which comprised 50 autistic disorder patients and 50 typically developing controls. Subjects with other 

disorders such as Asperger’s syndrome, etc. were not included in this study. Region of interest (ROI) signals were 

extracted from preprocessed fMRI data and correlation matrices were calculated for each subject, serving as input for 

the GraphVar. The utilized approach achieved superior diagnostic accuracy compared to contemporary reports. By 

integrating Graph theory with GraphVar's machine-learning capabilities, up to 84% diverse diagnostic accuracies were 

achieved using eigenvector centrality graphs. The integration streamlines the ASD diagnosis process, enabling faster, 

and more precise assessments. Early diagnosis would potentially improve the quality of life for individuals with ASD. 
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Abbreviations  

AAL: Automated Anatomical Labeling atlas 

ABIDE: Autism Brain Imaging Data Exchange 

ASD: Autism Spectrum Disorder 

AUC: Area Under Curve 

BMI: Body Mass Index 

FIQ: Fibromyalgia Impact Questionnaire 

FN: False Negative 

FP: False Positive 

MCC: Matthew’s Correlation Coefficient 

PIQ: Performance Intelligence Quotient 

PPV: Positive Predicted Value 

ROI: Region Of Interest 

Rs-fMRI: Resting-State Functional Magnetic Resonance Imaging 

SPM: Statistical Parametric Mapping 

SVM: Support Vector Machine 

TC: Typical Controls 

TN: True Negative 

TNR: True Negative Rate 

TP: True Positive 

TPR: True Positive Rate 

VIQ: Verbal Intelligence Quotient Introduction 

Introduction  

ASD as a neurodevelopmental disorder is characterized by persistent deficits 

in social communication and interaction and restricted and repetitive 

behaviors, interests, or activities [1-7]. It is known as a spectrum disorder 

because it presents differently in each individual, with varying degrees of 

severity and a diverse array of symptoms. The ASD diagnosis typically needs 

a comprehensive assessment conducted by a multidisciplinary team of 

professionals, including clinical psychologists, developmental pediatricians, 

speech and language therapists, and maybe other specialists. The diagnostic 

process should comprise clinical evaluation, medical examination, 
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standardized assessments, and screening for co-occurring conditions. The 

most important issue with ASD is early intervention for optimal outcomes 

[8]. A comprehensive and individualized approach for taking into account 

the unique characteristics of each person is also important to provide 

effective support and treatment. Researchers have increasingly turned to deep 

learning techniques to analyze and classify autism rs-fMRI data due to their 

ability to automatically extract detailed patterns and features for individual 

subjects from complex datasets. These approaches have shown promise in 

aiding the diagnosis and understanding of ASD. Various advanced 

neuroimaging and neurological data-gathering techniques have been utilized 

in the field of ASD research, encompassing structural and functional 

magnetic resonance imaging  (fMRI), positron emission tomography (PET), 

electroencephalography (EEG), magnetoencephalography (MEG), and the 

other innovative protocols [8, 9]. Among these modalities, a substantial 

focus has been directed toward fMRI investigations, spanning both task-

based (t-fMRI) and resting-state (rs-fMRI) fMRI data. Notably, public fMRI 

databases such as the ABIDE [10] have progressed over the years and today 

the datasets aggregate functional and structural brain imaging data from over 

24 distinct independent sites, and this has led to an increase in international 

research collaborations [11]. Recently, SVM methodology has been 

employed extensively for the classification of rs-fMRI data in individuals 

diagnosed with ASD compared to Typical Controls.  Chen et al. applied 

SVM to an fMRI dataset comprising 252 participants (126 ASD, 126 TC) 

attaining a classification accuracy of 66% [12]. Subsequently, Kassraian-

Fard et al. performed classification on a dataset of 

154 individuals (77 ASD, 77TC) achieving an accuracy of 63% [13]. In a 

study by Zhao et al. involving a dataset with 100 subjects (54 ASD, 46 TC) 

the SVM method achieved an accuracy of 81% in distinguishing between 

ASD patients and controls [14]. Further investigations continued to 

underscore the utility of SVM in this domain. Bhaumik et al. conducted a 

study using a larger group of 372 participants (167 ASD, 205 TC) yielding a 

classification accuracy of 70% [15]. In subsequent work, Kazeminejad et al. 

reported an accuracy of 80% using SVM on a dataset comprising 137 

individuals [16]. The trend of impressive classification accuracy using SVM 

persisted in later research endeavors. Zhao et al. analyzed a dataset 

containing 92 subjects (45 ASD, 47 TC) and achieved an accuracy of 83% 

in distinguishing between ASD patients and typical controls [17]. 

“GraphVar” has been introduced as a user-friendly graphical-user-interface 

based toolbox (MATLAB) for brain connectivity, including network 

construction and characterization, statistical analysis (GLM and Machine 

Learning) on network topological measures, and interactive exploration of 

results analyzing comprehensively. It integrates features across multiple 

current toolboxes, such as the Brain Connectivity Toolbox, Network-Based 

Statistic Toolbox, BRAPH, and BrainNetClass [18, 19]. The GraphVar 

toolbox is so easy that does not require any coding for machine learning 

analysis making it a convenient tool for a wide range of users. In this work, 

the main objective was to present an easy-to-use machine learning classifier 

model that can help with ASD diagnosis in clinical applications. For this 

purpose, we present a pioneering utilization of GraphVar's machine learning 

capabilities which include SVM and ElasticNet methods in the field of ASD 

research. Our study marks the application of GraphVar's advanced machine-

learning techniques to classify fMRI data derived from individuals with ASD 

and matched TC subjects. Furthermore, our investigation extends beyond 

mere classification by harnessing GraphVar's capabilities to generate 

complicated networks for each subject utilizing graph theory representations 

using complex neuro connectivity patterns inherent in the fMRI data. Central 

to our methodology is the employment of an SVM algorithm integrated 

within the GraphVar framework to discern distinctive neural signature 

characteristics of ASD and TC subjects. By using this innovative approach, 

we tried to enhance the accuracy and specificity of classification, potentially 

unveiling subtle differentiators concealed within the neuroimaging data. This 

study encompasses a comprehensive comparative analysis by applying 

principles of graph theory for network construction, comparing the outcomes 

derived from GraphVar's machine learning-driven classification with 

traditional methods. This approach provides a thorough evaluation of 

GraphVar's efficacy, offering insights into its potential as a transformative 

tool in neuroimaging-based disorder classification. In prior research, the 

GraphVar toolbox has been used to investigate various aspects of functional 

brain network connectivity and topology across a range of neuropsychiatric 

disorders. However, notably absent from its application is the domain of 

ASD diagnosis and modeling. For instance, Rikandi et al. explored functional 

network connectivity and topology in psychosis, shedding light on the 

irregularities present in the network organization of individuals affected 

by this condition [20]. Dacosta-Aguayo et al. employed GraphVar to 

analyze rs-fMRI data in patients with post-COVID-19 cognitive disorders 

[21]. Similarly, Nestor et al. investigated abnormal brain networks in 

stimulant use disorder using GraphVar, contributing to our understanding of 

the neural substrates underlying this addiction [22]. Furthermore, Zhu et al. 

examined the altered topological properties of brain functional networks in 

drug-resistant epilepsy patients through the lens of GraphVar [23]. Weiler 

et al. explored the relationship between cognitive reserve and network 

topology in Alzheimer's disease patients, highlighting the potential of 

GraphVar to uncover nuanced connectivity patterns associated with cognitive 

function [24]. Walter et al. delved into the realm of translational machine 

learning for psychiatric neuroimaging, underscoring GraphVar's versatility 

in capturing complex network dynamics [25]. Yang et al. investigated 

topological disruptions in whole-brain networks among childhood absence 

epilepsy patients, underscoring GraphVar's utility in multimodal EEG-fMRI 

studies [26]. 

In the following sections, we describe the steps taken in acquiring, 

preprocessing, and analyzing data then we will share the results and discuss 

them. 

1. Methodology 

Rs-fMRI data used in the study was procured from the ABIDE (Autism Brain 

Imaging Data Exchange) database, specifically from the NYU Langone 

Medical Center. The dataset encompassed fMRI images from a cohort of 184 

individuals, comprising 79 patients diagnosed with ASD and 105 typically 

developing controls. among the 79 ASD patients, there were subjects 

diagnosed with Asperger’s syndrome, pervasive developmental disorder, and 

autistic disorder. We focused on autistic disorder patients that were 50 

subjects and 50 typically developing controls, which were chosen in 

accordance. 

1.1 fMRI image preprocessing 

The initial phase of the research centered on data preprocessing, an essential 

step due to the inherent presence of noise and common artifacts within fMRI 

data. To address the presented challenges in the process, the dpabi [27, 28] 

toolbox was utilized, an established computational resource grounded in the 

principles of the SPM framework [29, 30].  

  

 

 Number of slabs 1 
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Anatomical Scan 

Slices per slab 128 

Slice thickness 1.33 mm 

TR 2530 ms 

TE 3.25 ms 

Filter Raw filter 

 

 

Functional scan 

Slice group 1 

Number of slices 33 

Slice thickness 4 mm 

TR 2000 ms 

TE 15 ms 

Filter None 

Table 1: Scan parameters 

Firstly, slice timing correction was executed on the rs-fMRI data to correct 

timing differences introduced during slice acquisition. Then realignment 

techniques were applied to mitigate motion-related artifacts, especially 

important in longitudinal rs-fMRI studies. Subsequently, spatial 

normalization was employed to facilitate cross-subject comparisons, 

aligning the fMRI data with a standard reference space. Gaussian spatial 

smoothing was applied to the normalized data, with a Full Width at Half 

Maximum (FWHM) of [6 6 6]. This step aimed to enhance the signal-to-

noise ratio and aid in subsequent analysis. After that, detrending was 

implemented to remove low-frequency drifts and artifacts, contributing to 

improved data quality. Band-pass filtering was then applied to confine the 

analysis to frequencies relevant to resting-state neural oscillations, 

specifically between 0.01 and 0.1 Hz. This comprehensive preprocessing 

approach aimed to ensure the reliability and quality of the fMRI data for our 

subsequent analysis and interpretation. 

2.2 ROI signal extraction 

ROI signals were carefully extracted for each individual, after the 

comprehensive preprocessing steps. Correlation matrices were computed 

from the extracted signals, a step achievable through both the dpabi toolbox 

and the GraphVar toolbox. However, the dpabi toolbox was specifically 

employed for this study. Each matrix serves as a distinct representation of 

functional connectivity patterns for an individual subject. Figure 1 represents 

functional connectivity patterns for a typical subject. 

 

 

Figure 1. Functional connectivity matrix for a TC subject with 116 regions of interest on both the x and y axes, illustrating the interconnectivity 

between the regions in terms of functional connectivity strength 

In Figure 1, the x and y axes demonstrate 116 brain regions based on the AAL 

atlas and connectivity between the ROIs (For this illustration, the 

connectivity matrices were Z-transformed (based on mean and standard 

deviation over all of the elements of the matrix using equation 1.) [31]. 

            𝑧 =
1

2
log(

1+𝑟

1−𝑟
)                                           (1)   

Where r is the correlation coefficient. 

2.3 Machine learning based classification 

The correlation matrices, serving as comprehensive descriptors of 

functional connectivity, were used as inputs for following machine 

learning analysis. Upon successful completion of the comprehensive 

preprocessing pipeline, as outlined in the previous section, we transitioned 

into the pivotal phase of the research applying advanced machine learning 

methodologies to examine the complex functional connectivity features 

inherent within the preprocessed rs-fMRI data and extract them for 

classification purposes. To achieve this, the SVM algorithm, embedded 

within the GraphVar framework was used. Within the GraphVar 

environment, a pivotal procedural sequence started by selecting anatomical 

brain regions, effectively establishing the framework for analysis. Herein, we 

employed the AAL atlas [32] encompassing a carefully curated collection of 

116 individual brain regions. This atlas was thoughtfully chosen to afford a 

comprehensive representation of the neural landscape, ensuring that no vital 

connectivity aspects were overlooked. The subsequent step involved the 

calibration of parameters governing the construction of functional 

connectivity networks. One of the crucial decisions involved choosing how 

to set the threshold and its range, as it greatly influences the strength of 

connections in the network. negative connections were intentionally left out 

in this study because negative functional connectivity is challenging to 

interpret biologically. Positive connectivity typically represents synchronous 

neural activity, indicating regions that tend to activate together. Negative 
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connectivity may suggest an anti-correlated activity, but its biological 

meaning is less clear, also negative connectivity can arise from various 

sources, including noise, artifacts, or physiological fluctuations. 

Distinguishing true negative connectivity from these sources can be 

methodologically challenging so a relative threshold spanning from 0.1 to 

0.5 was established. With the network construction parameters carefully set, 

we turned our focus to graph theory, using Graph Var to simultaneously 

explore both the theoretical aspects of graphs and the machine learning task 

at hand. This integrated approach allowed us to seamlessly combine a 

detailed understanding of graph properties with our machine-learning goal, 

enhancing the depth and comprehensiveness of our research. In this specific 

study, we employed the SVM (Support vector machine) probabilistic 

classification method. Renowned for its ability to discern complex patterns 

within datasets, the SVM algorithm proved to be an optimal choice for 

effectively categorizing our data into distinct classes, distinguishing between 

ASD patients and TC. During this stage, various parameters were extracted 

from the phenotypic file accompanying the dataset. Factors such as age, sex, 

BMI, FIQ (Full IQ), VIQ (Verbal IQ), and PIQ (Performance IQ) for each 

subject were included as variables in the classifier. This incorporation 

allowed us to assess the potential impact of these variables on the model's 

performance. After this step, an advanced nested cross-validation 

methodology has been employed within the GraphVar ML framework. This 

three-step structure for the validation of prediction models encompasses an 

outer loop designated for final validation, an optionally implemented middle 

loop for the optimization of hyperparameters, and an additional inner loop 

for feature selection. The implementation of this nested cross-validation 

paradigm necessitates extra data partitioning, where a subset of the training 

data is used at lower hierarchical tiers. After each hierarchical level, the 

parameters derived from the optimal model are circulated to higher tiers, 

activating a recursive process that enhances the model selection procedure. 

To assess the predictive performance of a trained prediction model, it is 

essential to evaluate the model on new, unseen data through a validation 

process. A common approach in machine learning is to reserve a portion of 

the available data as a test set to estimate the expected out-of-sample model 

performance. However, this data partitioning reduces the sample size for 

training, which can lead to two challenges, potential loss of critical data 

patterns and introducing dependency on a specific random choice for the 

train-test split. To address these limitations, K-fold cross-validation is 

frequently used. It divides the entire dataset into K subsets, repeating the 

holdout process K times. In each iteration, one of the K subsets serves as the 

test set, while the remaining K-1 subsets form the training set. The resulting 

predictions are then averaged across all K iterations to assess the overall 

model performance. The choice of K in K-fold cross-validation involves a 

trade-off between bias and variance, with lower K values being 

computationally efficient but potentially introducing more bias and less 

variance, while higher K values are computationally expensive and may 

introduce more variance and less bias.  

 

Figure 2. 5-fold cross-validation diagram 

our cross-validation configuration consisted of a 5-step cross-validation 

process, a 5-step hyperparameter optimization phase, and a feature selection 

threshold set at 0.5. Furthermore, within GraphVar ML, feature scaling is 

performed individually within each test and train split, ensuring that the 

scaling applied to the training set is replicated on the test set within each fold. 

This precise approach helps prevent data leakage, where the predictive model 

unintentionally derives information from the unseen or holdout data, thereby 

preserving the integrity of estimated prediction performance. 

2.Results 

 
Figure 3. The confusion matrix of SVM probabilistic classification and eigenvector centrality graph. The matrix includes true positives (TP), false 

negatives (FN), false positives (FP), and true negatives (TN) as crucial components with the values 42%, 8%, 8%, and 42%, respectively. 

Following the execution of preprocessing procedures on fMRI data, ROI 

signals were extracted from the data. Subsequently, correlation matrices 

were computed based on these ROI signals for each subject. These 

correlation matrices were then employed as the primary input for the  

machine learning model, facilitating the investigation of dynamic functional 

connectivity patterns within the fMRI data. In the execution of the machine 

learning analysis, diverse graph-based measures were used to derive insights 

and classify data, embodying a comprehensive exploration of network 

attributes about the classification task. After model execution, a comparative 
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analysis of results across different graph configurations ensued, facilitating 

the identification of the most effective approach. This model integrated an 

array of graph-based metrics encompassing assortativity, eigenvector 

centrality, graph radius, graph diameter, betweenness centrality, local and 

global characteristic path lengths, cluster coefficient, cost efficiency, degree 

distribution, density, small-world characteristics, positive strength, Shannon 

entropy-based diversity coefficient, path transitivity, and participation 

coefficient. The outcomes of the comparison are documented in Table 2, 

providing a comprehensive presentation of the performance yielded by each 

distinct graph configuration. Figure 3 displays the confusion matrix 

belonging to the highest accuracy achieved in classification tasks using SVM 

probabilistic classification and eigenvector centrality graph. 

These metrics delineate the outcomes of the model's predictive capabilities 

within a binary classification framework. True positives represent 42 

instances in which the model correctly identified as the positive class. False 

negatives, on the other hand, denote 8 instances that the model failed to 

recognize. False positives signify 8 instances in which the model incorrectly 

predicted the positive class. Lastly, True negatives encompass 42 instances 

that accurately identified the negative class. 

To quantitatively assess the model's overall accuracy, the standard formula 

for accuracy was employed: Accuracy = (TP + TN) / (TP + TN + FP + FN) 

×100% (2) 

Substituting the provided values into equation (2), 84% classification 

accuracy was obtained. Nevertheless, it is imperative to recognize that while 

accuracy offers a valuable performance metric, it is equally essential to 

consider additional evaluation criteria such as precision, recall, and 

sensitivity, or align the assessment with the specific objectives of the model 

to attain a comprehensive appraisal of its efficiency which is demonstrated 

in table 2. 

 

 

Accuracy PPV 

Prec. 

TPR 

Sens. 

TNR 

Spec. 

Assortativity 81% 84.4% 76% 86% 

Betweenness centrality 63% 60% 78% 48% 

Characteristic 

path length local 

72% 70.4% 76% 68% 

Characteristic path length 

global 

82% 82% 82% 82% 

Cluster coefficient 81% 81.6% 80% 82% 

Degree 72% 70.4% 76% 68% 

Density 80% 81.2% 78% 82% 

Eigenvector Centrality 84% 84% 84% 84% 

Graph diameter 81% 84.4% 76% 86% 

Graph radius 83% 82.4% 84% 82% 

participation coefficient 77% 78.7% 74% 80% 

cost efficiency 80% 82.6% 76% 84% 

Small world 80% 81.2% 78% 82% 

Path transitivity 67% 65.5% 72% 62% 

Strength Positive 81% 81.6% 80% 82% 

Shannon entropy- 

based diversity 

coefficient 

 

77% 

 

76.5% 

 

78% 

 

76% 

Table 2. Classification results with different graphs(PPV: positive predictive value (Precision), TPR: true positive rate (Sensitivity) 

TNR: true negative rate (Specificity)) 

Table 3 includes additional metrics, namely threshold, F1 score (the mean of precision and recall), AUC (Area Under the Curve), and MCC (Matthew's 

Correlation Coefficient), specifically for graphs with a higher than 80% accuracy. 

 

 

Threshold F1 AUC MCC 

Assortativity 0.1 0.8 0.87 0.623 

Characteristic path 

length global 

0.5 0.82 0.876 0.64 

Cluster 

coefficient 

0.49 0.808 0.864 0.62 

Density 0.49 0.796 0.846 0.6 

Eigenvector 

Centrality 

0.24 0.84 0.885 0.68 

Graph 

diameter 

0.42 0.8 0.86 0.623 

Graph radius 0.1 0.832 0.878 0.66 

cost 

efficiency 

0.45 0.792 0.88 0.602 

Small world 0.45 0.796 0.863 0.6 
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Strength 

Positive 

0.37 0.808 0.841 0.62 

Table 3. Threshold, F1, AUC, MCC values 

3.Discussion 

As presented in Table 2, our analysis achieved a notably high classification 

accuracy, prominently demonstrated by the eigenvector centrality metric 

attaining an impressive 84% accuracy. The achievement stands in stark 

contrast to prior investigations utilizing the similar classification 

methodology and dataset, thus underscoring the advancements realized in the 

study. Following closely in the second position, the proposed model 

grounded in the graph radius metric exhibited an appreciable accuracy of 

83%, substantiating the robustness and efficacy of this approach. In Table 4, 

we undertake a comparative analysis of the obtained findings to compare them 

with the state-of-the-art studies. As demonstrated, the proposed method, 

despite its exclusion of complex coding procedures, has successfully attained 

superior classification accuracy in contrast to preceding investigations 

employing analogous data and classification techniques. 

Studies Accuracy Classification 

method 

Brain Atlas Dataset Participants 

Kassraian-Fard 

et al. [13] 

63% SVM CC200 ABIDE 77 ASD 

77 TC 

Plitt et al. [33] 76.67% scikit-learn 

library 

      Destrieux 

Power 

DiMartino 

rs-fMRI 

data 

59 ASD 

59 TC 

Yang et al. [34] 77.74% 3D CNN 8 functional 

connectivity 

networks from 

group-ICA 

ABIDE 79 ASD 

 

105 TC 

Kazeminejad et 

al. [16] 

80% Gaussian 

SVM 

AAL116 ABIDE 137 

(ASD&TC) 

Zhao et al. [14] 

2018 

81% multiple linear 

SVMs 

Multi-level, 

high-order FCs 

ABIDE 54 ASD 

46 TC 

Zhao et al. [17] 

2020 

83% Linear-SVM AAL116 ABIDE 45 ASD 

47 TC 

The proposed 

model 

84% SVM 

probabilistic 

classification 

AAL116 ABIDE 50 ASD 

           50TC 

Table 4. Comparison of obtained results with the state-of-the-art studies 

In the ASD classification literature, Kassraian-Fard et al. employed a 

Support Vector Machine with an accuracy of 63%. They utilized the CC200 

brain atlas and the ABIDE dataset, involving 77 individuals with ASD and 

77 typically developing (TC) participants. Another notable study by Plitt et 

al. achieved an accuracy of 76.67% using the scikit-learn library. Their 

approach involved brain atlases from Destrieux and Power DiMartino, 

utilizing rs-fMRI data. The dataset comprised 59 ASD and 59 TC 

individuals. Yang et al. took a different approach, employing a 3D 

Convolutional Neural Network (CNN) to achieve an accuracy of 77.74%. 

They utilized eight functional connectivity networks derived from group-

ICA and the ABIDE dataset, with 79 ASD participants and 105 TC 

individuals. Kazeminejad et al. opted for a Gaussian SVM, attaining an 80% 

accuracy. Their study used the AAL116 brain atlas and the ABIDE dataset, 

incorporating 137 individuals, including both ASD and TC participants. In 

2018, Zhao et al. achieved an 81% accuracy using multiple linear SVMs. 

Their study involved a brain atlas based on multi-level, high-order functional 

connections, and the ABIDE dataset with 54 ASD and 46 TC participants. 

Zhao et al. in 2020 improved accuracy to 83% with a Linear-SVM approach. 

The AAL116 brain atlas and the ABIDE dataset were utilized, involving 45 

individuals with ASD and 47 TC participants. As one can see, the ABIDE 

dataset on AAL116 brain atlas with different SVM utilizing were introduced 

as common approach in this field of research. However, in this work the 

GraphVar integrated SVM with Graph theory without extra computation 

were used.  Also, the proposed model demonstrated promising results with 

an accuracy of 84%, where SVM with probabilistic classification with 

different graphs to enhance classification accuracy were used.  

By the way, the study has a couple of limitations that need to be 

acknowledged. Firstly, the utilization of GraphVar was constrained by its  

limited incorporation of machine learning algorithms, which may restrict the 

exploration of diverse analytical approaches. Then in future, one should 

enhance methodological flexibility and deepen the understanding of the data. 

Secondly, the study acknowledges a constraint in the number of subjects 

included, which may limit the accuracy in %84. A larger and more diverse 

dataset may potentially enhance and yield more robust results, providing a 

clearer picture of the patterns and relationships under investigation. 

Consequently, future endeavors should aim to broaden the participant pool 

to achieve greater statistical power and generalizability. Furthermore, the 

study anticipates that with the integration of additional machine learning 

algorithms into the GraphVar framework. Then the research can be 

replicated and extended, fostering a more comprehensive and nuanced 

understanding of the underlying patterns in the data. 

Conclusion 

In summary, the investigation demonstrated the efficacy of GraphVar as a 

proficient tool for executing machine learning and statistical analysis on  

cerebral datasets. Within the context of the paper, this toolbox was used to 

effectively conduct the classification of ASD data. SVM probabilistic  

classification was employed in conjunction with diverse graph metrics to 

classify data of ASD patients and typical control. Notably, our efforts yielded 

commendable outcomes, with the most noteworthy performance achieved 

through the utilization of eigenvector centrality graphs, attaining an accuracy 

rate of 84%. Looking forward, the integration of this particular graph 

construct holds promise for enhancing classification outcomes across various 

machine learning methodologies, affording the potential for heightened 

precision and more favorable outcomes. In the future by integration of easy-

to-use machine learning tools such as GraphVar in clinical settings alongside 

traditional methods used for ASD diagnosis, the diagnostic process could be 
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much faster and more accurate which helps physicians start the treatment 

process way faster and achieve better results increasing quality of life in 

people with ASD. 
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