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Abstract 

In this study, a novel titatium dioxide/titanium carbide (MXene) heterostructure nanocomposites (TiO2/Ti3C2Tx 

NCs) was examined during photocatalytic degradation process (PCD) in the efficient removal of carbamazepine 

(CBZ) antiepileptic drug in pharmaceutical industry wastewater (PCI ww), İzmir, Turkey. Different pH values (3.0, 

4.0, 5.0, 6.0, 7.0, 9.0 and 11.0), increasing photodegradation times (30, 60, 90, 120, 150 and 180 min), increasing 

CBZ concentrations (5, 10, 15 and 20 mg/l) and increasing TiO2/Ti3C2Tx MXene heterostructure NCs 

concentrations (5, 10, 20, 40 and 80 mg/l) was operated during PCD for the efficient removal of CBZ in PCI ww. 

The characteristics of the synthesized nanoparticles (NPs) were assessed using XRD, RS, XPS, FESEM, FTIR and 

TEM analyses, respectively. ANOVA statistical analysis was used for all experimental samples. The maximum 

99.34%% CBZ removal was obtained after PCD in PCI ww, at pH=5.0, at 300 W UV-vis and at 25oC, respectively. 

99.58% CBZ maximum removal was observed after 180 min with PCD in PCI ww, at 300 W UV-vis, at pH=5.0 and 

at 25oC, respectively. The maximum 99.42% CBZ removal was obtained at 10 mg/l CBZ with PCD in PCI ww after 

180 min, at 300 W UV-vis, at pH=5.0 and at 25oC, respectively. The maximum 99.67% CBZ removal was obtained 

at 10 mg/l TiO2/Ti3C2Tx MXene heterostructure NCs, after 180 min, at 10 mg/l CBZ, at 300 W UV-vis, at pH=5.0 

and at 25oC, respectively. Finally, the combination of a simple, easy operation preparation process, cost effective 

and excellent performance makes this a novel TiO2/Ti3C2Tx MXene heterostructure NCs a promising option during 

PCD for the removals of CBZ antiepileptic drugs in PCI ww treatment. 

Keywords: anova statistical analysis; carbamazepine (cbz); pharmaceutical industry wastewater; photocatalytic 

degradation process; tio2/ti3c2tx (mxene) nanocomposite 

1. Introduction 

Pharmaceutical industry is one of the important and largest industries 

worldwide and at the same time, a large number of contaminations is being 

generated by the pharmaceutical products. These products are largely 

disbursed at high quantities into the environment by purposely and 

accidentally. As a result, pharmaceutical compounds can be found in 

different environmental compartments such as soil, water surfaces, and 

even in drinking water. Specially, pharmaceutical products are frequently 

detected in natural and wastewater system [1, 2]. The number of 

pharmaceutical pollutants and their metabolites collection in water bodies 

are not high-pitched (ng/l to mg/l), however, these pharmaceutical 

molecules are specifically designed to initiate the biological response at 

very low concentration levels. Therefore, it may lead to some adverse 

effects on biological system and human health such as aquatic toxicity, 

high resistance bacteria, acute and chronic disease, hormonal and 

endocrine disruption. Moreover, most of the pharmaceutical drugs possess 

very stable chemical structure and non-biodegradable properties. Thus, the 

detection and removal/degradation of pharmaceutical compounds in the 

water system has been evolved as a growing concern in worldwide, which 

is essentially due to their potential toxicity and hazardous to the living 

ecosystems and human beings [3]. 

The various available techniques to remove and degrade the 

water/wastewater contaminating pharmaceutical pollutants include 

adsorption, microbial degradation, photocatalysis, ozonolytic, 

electrocatalysis and membrane filtration processes [3, 4]. Of these 

techniques, the photocatalysis offers a promising solution for the effective 

degradation of antibiotics contaminants in water using solar energy [3, 5-

7], where the strong redox reactions of photocatalysis offer effective 

mineralization, high degradation efficiency, less byproducts and/or 

simple/non-toxic degradation products. However, the photocatalytic 

efficiency of photocatalysts mainly depends upon many crucial features 

such as suitable band edge position, narrow band gap energy, reduced 

charge recombination, enhanced charge separation, transfer and surface-

active sites [7]. Accordingly, considerable efforts have been made to 

achieve these properties by constructing hybrid nanocomposite structures 

of photocatalysts with controlled preparation methods [8]. As described, 

these hybrid nanocomposites fundamentally offer enhanced surface and 
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catalytic properties delivered by large surface area, rich active sites, 

extended photoabsorbance, higher charge generation, improved interfacial 

charge separation and strong redox properties [5, 6, 8, 9].  

Carbamazepine (CBZ; C15H12N2O), is an antiepileptic drug currently 

prescribed for treatment of seizure disorders, chronic pain, and for 

psychopharmacotherapy [10], which is commonly found in environmental 

matrices (irrigation water, domestic wastewater and river water); It is very 

resistant to microbial biodegradation [11]. Usually, CBZ is excreted with 

<3% remaining in its unaltered form and flushed directly to the wastewater 

treatment plants (WWTPs) through the sewage system. Studies have 

determined that CBZ is persistent, with removal efficiencies by the 

WWTPs are being mostlybelow 10%. In the classification scheme for 

pharmaceutical biodegradation, CBZ has the status of “no-removal” [12]. 

Clara et al. [13], and Kosjek et al. [14], reported that CBZ is resistant to 

biodegradation and shows almost no elimination during conventional 

wastewater treatment. In order to completely remove the CBZ antiepileptic 

drug from the aquatic environment; There is a need for better and safer 

methods. In the removal of CBZ from the aquatic environment; Various 

treatment methods such as adsorption, chemical precipitation, ozonation, 

biofiltering and photocatalytic degradation are used [15]. The 

photocatalytic degradation is one of the best options for treating drinking 

water and wastewater streams contaminated with pharmaceuticals [16].  

TiO2, a nano photocatalyst, is one of the most widely used photocatalysts 

to break down pharmaceutical pollutants in water [11, 17]. Leaf-shaped 

TiO2 has different phases; Theoretical studies combined with 

experimental studies have shown that the {0 0 1} side of anatase TiO2 is 

more reactive than the {1 0 1} side so that it can be excited by light [18, 

19]. It has also been reported that the bonding of (0 0 1)-TiO2 to a 2-D 

material can reduce the band gap and increase the photocatalytic activity 

[20]. Ti3C2 contains a large amount of Ti, which can be easily converted 

to TiO2 by oxidation [21-24]. Ti3C2 can produce {0 0 1} anatase TiO2 

facets in its nano-thin layers under certain conditions [19, 25]. The main 

limitation of TiO2 is a relatively wide band gap, (3.02 eV for rutile, 3.2 eV 

for anatase) which results in about 5% spectral overlap between its 

absorbance and sunlight emission (λ < ~390 nm) [26]. The most important 

disadvantages of TiO2 in the photocatalytic degradation process are; fast 

recombination of electron holes and low quantum yield [27]. In order to 

slow down the electron hole recombination rate; more research is needed. 

To reduce the band gap and for a photocatalyst with semiconductor 

heterojunctions; The modifications of TiO2 and the use of heterostructure 

nanocompounds with other chemical compounds provide higher yields [5].  

Titanium carbide (Ti3C2Tx) MXenes are two-dimensional (2-D) carbide 

materials with layered stacking structure similar to graphene [28]. In 2011, 

Ti3C2Tx MXenes were first reported by Gogotsi [29]. This work opens 

the door to the preparation and application of 2-D MXenes. Then more and 

more researches have focused on the synthesis, properties, and applications 

of Ti3C2Tx MXenes [30]. The general formula of MXenes is Mn+1XnTx, 

where M is transition metal, such as Ti, Mo, Nb, V, Cr, Zr, Ta, etc., X is 

carbon, nitrogen (n = 1–4), and T is the surface-functionalized groups. 

MXenes exhibit high electrical conductivity (up to 20,000 S/cm) [31], high 

stability, superior mechanical properties, and tunable layered structure.  

MXenes have attracted increasing interest and become the focus of 

researchers. There are wide potential applications in batteries, 

supercapacitors, solar cells and solar steam generation, electromagnetic 

interference (EMI) shielding materials [32-39]. MXenes have 

photocatalytic properties [40]. Various MXenes have been discovered in a 

number of research areas, including wastewater treatment [41, 42]. 

Titanium carbide (Ti3C2) MXene nanolayers are the first member of the 

MXene family [29], and retain their catalytic properties [40, 43]. Possible 

modifications and functionalizations of Ti3C2 make it a promising 

photocatalyst for CBZ degradation in aquatic environments. These 

advantages make MXene an attractive platform for preparing composites 

in photocatalytic systems [44]. In particular, Ti3C2Tx contains a large 

proportion of Ti, which can undergo surface oxidation to yield TiO2/ 

Ti3C2Tx [21-24]. Shahzad et al. [23], fabricated an anatase TiO2/Ti3C2Tx 

heterostructure through the hydro thermal treatment process, 

demonstrating an excellent photocatalytic degradation of the antiepileptic 

drug carbamazepine. More importantly, the interfacial Schottky junction 

that is formed between the TiO2 and the layered C atoms provides a large 

reservoir of holes, which facilitates the charge separation and transfer, 

essential for the formation of radicals involved in the photodegradation 

process [23]. 

In this study, TiO2/Ti3C2Tx MXene heterostructure NCs was examined 

during PCD in the efficient removal of CBZ in PCI ww, İzmir, Turkey. 

Different pH values (3.0, 4.0, 5.0, 6.0, 7.0, 9.0 and 11.0), increasing 

photodegradation times (30, 60, 90, 120, 150 and 180 min), increasing 

CBZ concentrations (5, 10, 15 and 20 mg/l) and increasing TiO2/Ti3C2Tx 

MXene heterostructure NCs concentrations (5, 10, 20, 40 and 80 mg/l) was 

operated during PCD for the efficient removal of CBZ in PCI ww. The 

characteristics of the synthesized NPs were assessed using XRD, RS, XPS, 

FESEM, FTIR and TEM analyses, respectively. ANOVA statistical 

analysis was used for all experimental samples. 

2. Materials and Methods 

2.1. Characterization of PCI WW 

Characterization of the biological aerobic activated sludge proses from a 

PCI ww plant, İzmir, Turkey was performed. The results are given as the 

mean value of triplicate samplings (Table 1). 

Parameters Unit Concentrations 

Chemical oxygen demand-total (CODtotal) (mg/l) 4000 

Chemical oxygen demand-dissolved (CODdissolved) (mg/l) 3200 

Biological oxygen demand-5 days (BOD5) (mg/l) 1500 

BOD5 / CODdissolved  0.5 

Total organic carbons (TOC) (mg/l) 1800 

Dissolved organic carbons (DOC) (mg/l) 1100 

pH  8.3 

Salinity as Electrical conductivity (EC) (mS/cm) 1552 

Total alkalinity as CaCO3 (mg/l) 750 

Total volatile acids (TVA) (mg/l) 380 

Turbidity (Nephelometric Turbidity unit, NTU) NTU 7.2 

Color 1/m 50 

Total suspended solids (TSS) (mg/l) 250 

Volatile suspended solids (VSS) (mg/l) 187 

Total dissolved solids (TDS) (mg/l) 825 

Nitride (NO2
-) (mg/l) 1.7 

Nitrate (NO3
-) (mg/l) 1.91 

Ammonium (NH4
+) (mg/l) 2.3 

Total Nitrogen (Total-N) (mg/l) 3.2 
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Sulfite ion (SO3
-2) (mg/l) 21.4 

Sulphate (SO4
-2) (mg/l) 29.3 

Chloride (Cl-) (mg/l) 37.4 

Bicarbonate (HCO3
-) (mg/l) 161 

Phosphate (PO4
-3) (mg/l) 16 

Total Phosphorus (Total-P) (mg/l) 40 

Total Phenols (mg/l) 70 

Oil & Grease (mg/l) 220 

Cobalt (Co+3) (mg/l) 0.2 

Lead (Pb+2) (mg/l) 0.4 

Potassium (K+) (mg/l) 17 

Iron (Fe+2) (mg/l) 0.42 

Chromium (Cr+2) (mg/l) 0.44 

Mercury (Hg+2) (mg/l) 0.35 

Zinc (Zn+2) (mg/l) 0.11 

Table 1: Characterization of PCI ww.

2.2. Preparation of TiO2/Ti3C2Tx (MXene) NCs 

For the synthesis of {0 0 1} facets of Ti3C2/TiO2 photocatalyst (001-

T/MX); After mixing 200 mg of synthesized Ti3C2Tx powder and 0.330 

g of NaBF4 (99%, Sigma-Aldrich) for 30 minutes, ultrasonication was 

applied for 10 minutes. 100 ml of Suspension was taken and kept in a teflon 

lined stainless steel autoclave at 160°C for 12 h. The sample was then 

washed several times with ethyl alcohol/deionised water until a pH=6.5 

was reached. The as-synthesised photocatalyst was then dried in a vacuum 

oven at 70°C overnight and stored in a plastic jar until use. 

2.3. Photocatalytic Degradation Reactor  

A 2-liter cylinder quartz glass reactor was used for the photodegradation 

experiments in the PCI ww at different operational conditions. 1000 ml 

PCI ww was filled for experimental studies and the photocatalyst were 

added to the cylinder quartz glass reactors. The 300 W Xe lamp for UV-A 

vis light were placed to the outside of the photo-reactor with a distance of 

3 mm. The photocatalytic reactor was operated with constant stirring (1.5 

rpm) during the PCD. 10 ml of the reacting solution (10 mg/l CBZ solution 

and 10 mg/l TiO2/Ti3C2Tx MXene) were sampled and centrifugated (at 

10000 rpm) at different time intervals at 25oC. The UV irradiation 

treatments were created using six 50 W Xe lamp for UV-A vis light (Total: 

300 W) emitting in the 250–450 nm range (λmax = 350 nm; AM 1.5G 

filter, 100 mW/ cm2, FWHM = 17 nm; Actinic BL TL-D 18W, Philips). 

At given different photocatalytic degradation time intervals, the 

suspension of 10 ml was sampled and separated by centrifuge, then 

analyzed according to the absorbance at λmax >290 nm nm for CBZ by a 

UV-vis spectrometer (Cary 5000 UV-Vis Spectrophotometer from Varian, 

Siemens, Germany). 

2.4. Characterizations 

2.4.1. X-Ray Diffraction (XRD) Analysis 

Powder XRD patterns were recorded on a Shimadzu XRD-7000, Japan 

diffractometer using Cu Kα radiation (λ = 1.5418 Å, 40 kV, 40 mA) at a 

scanning speed of 1o /min in the 10-80o 2θ range.  

2.4.2. Raman Spectrophotometer (RS) Analysis 

Raman spectrum was collected with a Horiba Jobin Yvon-Labram HR UV-

Visible NIR (200-1600 nm) Raman microscope spectrometer, using a laser 

with the wavelength of 512 nm. The spectrum was collected from 10 scans 

at a resolution of 2 /cm. The zeta potential was measured with a SurPASS 

Electrokinetic Analyzer (Austria) with a clamping cell at 300 mbar. 

2.4.3. X-Ray Photoelectron Spectroscopy (XPS) Analysis 

XPS spectra were measured on a SPECS spectrometer equipped with a 

Phoibos 150 9MCD detector using a non-monochromatic X-ray source (Al 

and Mg) operating at 200 W. The samples were evacuated in the 

prechamber of the spectrometer at 1x10−9 mbar. The measured intensity 

ratios of the components were obtained from the area of the corresponding 

peaks after nonlinear Shirley-type background subtraction and corrected 

by the transition function of the spectrometer.  

2.4.4. Field Emission Scanning Electron Microscopy (FESEM) 

Analysis 

The morphological features and structure of the synthesized catalyst were 

investigated by FESEM (FESEM, Hitachi S-4700). 

2.4.5. Fourier Transform Infrared Spectroscopy (FTIR) Analysis  

The FTIR spectra of samples was recorded using the FT-NIR spectroscope 

(RAYLEIGH, WQF-510). 

2.4.6. Transmission Electron Microscopy (TEM) Analysis 

The structure of the samples was analyzed TEM analysis. TEM analysis 

was recorded in a JEOL JEM 2100F, Japan under 200 kV accelerating 

voltage. Samples were prepared by applying one drop of the suspended 

material in ethanol onto a carbon-coated copper TEM grid, and allowing 

them to dry at 25oC.  

2.5. Analytical Procedures 

CODtotal, CODdissolved, Total-P, PO4-3-P, Total-N, NH4+-N, NO3--N, 

NO2--N, BOD5, pH, T[(oC)], TSS, TVSS, TOC, Oil, Cl-, total phenol, 

TVA, DOC, total alkalinity, turbidity, TDS, color, SO3-2, SO4-2, HCO3-

, salinity, Co+3, Pb+2, K+, Fe+2, Cr+2, Hg+2 and Zn+2 were measured 

according to the Standard Methods (2017) 5220B, 5220D, 4500-P, 4500-

PO4-3, 4500-N, 4500-NH4+, 4500-NO3-, 4500-NO2-, 5210B, 4500-H+, 

2320, 2540D, 2540E, 5310, 5520, 4500-Cl-, 5530, 5560B, 5310B, 2320, 

2130, 2540E, 2120, 4500-SO3-2, 4500-SO4-2, 5320, 2520, 3500-Co+3, 

3500-Pb+2, 3500- K+, 3500-Fe+2, 3500-Cr+2, 3500- Hg+2, 3500-Zn+2, 

respectively [45]. 

Total-N, NH4+-N, NO3--N, NO2--N, Total-P, PO4-3-P, total phenol, 

Co+3, Pb+2, K+, Fe+2, Cr+2, Hg+2, Zn+2, SO3-2, and SO4-2 were 

measured with cell test spectroquant kits (Merck, Germany) at a 

spectroquant NOVA 60 (Merck, Germany) spectrophotometer (2003).  

The measurement of color was carried out following the methods described 

by Olthof and Eckenfelder [46], and Eckenfelder [47]. According these 

methods, the color content was determined by measuring the absorbance 

at three wavelengths (445 nm, 540 nm and 660 nm), and taking the sum of 

the absorbances at these wavelengths. In order to identify the color in 25 

ml PCI ww was acidified at pH=2.0 with a few drops of 6 N HCl and 

extracted three times with 25 ml of ethyl acetate. The pooled organic 

phases were dehydrated on sodium sulphate, filtered and dried under 

vacuum. The residue was sylilated with 

bis(trimethylsylil)trifluoroacetamide (BSTFA) in dimethylformamide and 

analyzed by gas chromatography–mass spectrometry (GC-MS) and gas 

chromatograph (GC) (Agilent Technology model 6890N) equipped with a 

mass selective detector (Agilent 5973 inert MSD). Mass spectra were 

recorded using a VGTS 250 spectrometer equipped with a capillary SE 52 
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column (HP5-MS 30 m, 0.25 mm ID, 0.25 μm) at 220°C with an isothermal 

program for 10 min. The initial oven temperature was kept at 50oC for 1 

min, then raised to 220oC at 25oC/min and from 200 to 300oC at 8oC/min, 

and was then maintained for 5.5 min. High purity He (g) was used as the 

carrier gas at constant flow mode (1.5 ml/min, 45 cm/s linear velocity). 

The total phenol was monitored as follows: 40 ml PCI ww was acidified 

to pH=2.0 by the addition of concentrated HCl. Total phenol was then 

extracted with ethyl acetate. The organic phase was concentrated at 40°C 

to about 1 ml and silylized by the addition of N, O-bis(trimethylsilyl) 

acetamide (BSA). The resulting trimethylsilyl derivatives were analysed 

by GC-MS (Hewlett-Packard 6980/HP5973MSD). 

Methyl tertiary butyl ether (MTBE) was used to extract oil from the water 

and NPs. GC-MS analysis was performed on an Agilent gas GC system. 

Oil concentration was measured using a UV–vis spectroscopy 

fluorescence spectroscopy and a GC–MS (Hewlett-Packard 

6980/HP5973MSD). UV–vis absorbance was measured on a UV–vis 

spectrophotometer (Cary 5000 UV-Vis Spectrophotometer from Varian, 

Siemens, Germany), and oil concentration was calculated using a 

calibration plot which was obtained with known oil concentration samples.  

2.6. Statistical Analysis  

ANOVA analysis of variance between experimental data was performed 

to detect F and P values. The ANOVA test was used to test the differences 

between dependent and independent groups [48]. Comparison between the 

actual variation of the experimental data averages and standard deviation 

is expressed in terms of F ratio. F is equal (found variation of the date 

averages/expected variation of the date averages). P reports the 

significance level, and d.f indicates the number of degrees of freedom. 

Regression analysis was applied to the experimental data in order to 

determine the regression coefficient R2, [49]. The aforementioned test was 

performed using Microsoft Excel Program. 

All experiments were carried out three times and the results are given as 

the means of triplicate samplings. The data relevant to the individual 

pollutant parameters are given as the mean with standard deviation (SD) 

values. 

3. Results and Discussions  

3.1. The Photocatalytic Degradation Mechanism of TiO2/Ti3C2T NCs 

TiO2 for mineralization of organic micropollutants by oxidation process 

under UV-vis light radiation; It is one of the most widely used 

photocatalysts. TiO2 forms vacancies (h+) and electrons (e−1), which react 

with water molecules and produce active radicals [5]. Under UV-vis light 

irradiation, exposed {0 0 1} facets of TiO2 excited and produced e−1 and 

h+, which then reacted with dissolved oxygen to form reactive OH● 

radicals. Ti3C2Tx carries OH as a surface functional group in the form of 

Ti−C−O [50]. After controlled oxidation to form heterojunctions, Ti3C2Tx 

was terminated by OH groups; It exhibits metallic behavior with its narrow 

band and carrier mobility [29]. (0 0 1)-TiO2-Ti3C2Tx in the electron 

transfer mechanism in heterojunctions; The transfer of electrons generated 

on the TiO2 surface to the Ti3C2Tx layers at the interface is prevented. 

There are likely two reasons for this: (1) Ti3C2Tx has a higher negative 

Fermi level than TiO2's conduction band; because the charge transfer 

resistance depends on the Fermi levels of the surface states and conduction 

band [51]; and (2) the work function of Ti3C2Tx is much lower than that 

of TiO2. In a theoretical working calculation, OH-terminated Ti3C2Tx 

nanosheets (1.8 eV) have a much lower work function than (0 0 1)-TiO2 

(4.924 eV) [52]. Considering the large gap in the work function of the two 

phases in the heterostructure through their interface, the Schottky barrier 

has been estimated [43]. The Schottky barrier is a potential energy barrier 

for electrons formed in a metal semiconductor; It can inhibit electron 

transfer from TiO2 to Ti3C2Tx, but allow h+ flow to the photogenerate. 

The Schottky barrier effectively prevents the backflow of h+ through the 

TiO2-Ti3C2Tx interface. 

3.2. The Degradation Pathways of CBZ  

Possible photocatalytic degradation pathways of CBZ; The aromatic ring 

of CBZ was attacked by OH● free radicals generated from the 

photocatalyst's heterojunctions, producing a stable intermediate followed 

by H-abstraction. According to the detected intermediates, path 1 and path 

2; Two different degradation pathways are proposed [53]. In pathway 1, 

the OH● substitution in the CBZ molecule can produce hypothetical 

intermediates I, II, and III; then ring cleavage produces two degradation 

products, designated A (2-hydroxybenzoic acid) and B (2-aminobenzoic 

acid) (Figure 1).

 

Figure 1: The Degradation Pathways of CBZ. 

In Path 2, the substitution of O● in hypothetical intermediate I produces 

hypothetical intermediates IV and then V; It consists of the identified 

intermediate C (acridine) (Figure 1). More OH● substitutions than acridine 

form intermediate D, defined as formaldehyde-acridine. As a result of 

more transformations in pathway 1, more oxidation and ring cleavage; It 

can produce aniline and benzoic acid, which is reduced to CO2 and H2O 

[54]. However, in route 2, formaldehyde-acridine (intermediate D) was 

converted to CO2 and H2O by ring cleavage processes (Figure 1). 

3.3. Characterizations 
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3.3.1. The Results of XRD Analysis  

The results of XRD analysis of as prepared for TiO2 NPs (Figure 2a), 

Ti3C2Tx NCs (Figure 2b) and TiO2/Ti3C2Tx MXene heterostructure NCs 

(Figure 2c), respectively, after PCD of CBZ in PCI ww (Figure 2). The 

characterization peaks of TiO2 NPs were observed at 2θ values and 

corresponding of 9.41o (004), 33.17o (112), 37.24o (006), 39.71° (104), 

42.87o (020) and 61.09o (008), respectively (Figure 2a). The XRD patterns 

of Ti3C2Tx NCs showed the 2θ values and corresponding of 9.58° (103), 

18.64° (202), 28.17o (112), 34.40o (008), 35.63° (133), 38.16o (110), 

42.28o (200) and 62.23o (301), respectively (Figure 2b). The XRD peaks 

of TiO2/Ti3C2Tx MXene heterostructure NCs obtained at 2θ values and 

corresponding of 25.38o (100), 38.12o (302), 48.27o (101), 55.12o (110), 

56.28o (204) and 64.33o (113), respectively (Figure 2c). 

 

 

Figure 2: The XRD spectra of (a) TiO2 NPs, (b) Ti3C2Tx NCs and (c) TiO2/Ti3C2Tx MXene heterostructure NCs, respectively, after PCD of CBZ in PCI 

ww. 

3.3.2. The Results of RS Analysis 

The results of RS analysis of as prepared for Ti3C2Tx NCs (Figure 3a) and 

TiO2/Ti3C2Tx MXene heterostructure NCs (Figure 3b) after PCD of CBZ 

in PCI ww (Figure 3). The RS patterns of Ti3C2Tx NCs observed the 2θ 

values and corresponding of 100.12° (101) and 558.74o (201), respectively 

(Figure 3a). The RS peaks of TiO2/Ti3C2Tx MXene heterostructure NCs 

obtained at 2θ values and corresponding of 175.12o (120), 400.28o (211), 

512.10o (320) and 645.73o (103), respectively (Figure 3b). 

 

Figure 3: The RS spectra of (a) Ti3C2Tx NCs and (b) TiO2/Ti3C2Tx MXene heterostructure NCs after PCD of CBZ in PCI ww (▲: TiO2 NPs). 

3.3.3. The Results of XPS Analysis 

The XPS images of TiO2/Ti3C2Tx MXene heterostructure NCs was observed after PCD of CBZ in PCI ww (Figure 4). 
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Figure 4: The XPS spectra of TiO2/Ti3C2Tx MXene heterostructure NCs after PCD of CBZ in PCI ww. 

3.3.4. The Results of FESEM Analysis 

The morphological features of TiO2/Ti3C2Tx MXene heterostructure NCs were characterized through FESEM images (Figure 5) after PCD of CBZ in 

PCI ww. 

 

Figure 5: The FESEM images of TiO2/Ti3C2Tx MXene heterostructure NCs after PCD of CBZ in PCI ww (FESEM images size: 100 nm). 

3.3.5. The Result of FTIR Analysis 

The FTIR spectrum of Ti3C2Tx NCs (black spectrum) (Figure 6a) and 

TiO2/Ti3C2Tx MXene heterostructure NCs (red spectrum) (Figure 6b) 

after PCD of CBZ in PCI ww (Figure 6). The main peaks of FTIR spectrum 

for Ti3C2Tx NCs (black spectrum) was observed at 1080 1/cm, 1051 1/cm, 

956 1/cm 563 1/cm wavenumber, respectively (Figure 6a). The main peaks 

of FTIR spectrum for TiO2/Ti3C2Tx MXene heterostructure NCs (red 

spectrum) was obtained at 1112 1/cm, 1073 1/cm, 950 1/cm, 740 1/cm and 

544 1/cm wavenumber, respectively (Figure 6b). 
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Figure 6: The FTIR spectra of (a) Ti3C2Tx NCs and (b) TiO2/Ti3C2Tx MXene heterostructure NCs after PCD of CBZ in PCI ww. 

3.3.6. The Results of TEM Analysis. 

The TEM images of TiO2/Ti3C2Tx MXene heterostructure NCs was observed after PCD of CBZ in PCI ww (Figure 7). 

 

Figure 7: The TEM images of TiO2/Ti3C2Tx MXene heterostructure NCs after PCD of CBZ in PCI ww (TEM images size: 100 nm). 

3.4. Effect of Increasing pH Values.  

Increasing pH values (3.0, 4.0, 5.0, 6.0, 7.0, 9.0 and 11.0) was examined 

with PCD for the removal of CBZ in PCI ww, at 300 W UV-vis light and 

at 25oC (Figure 8). 66.71%, 83.24%, 80.11%, 71.53%, 56.24% and 

35.76% CBZ removals was measured at pH=3.0, pH=4.0, pH=6.0,  

pH=7.0, pH=9.0 and pH=11.0, respectively, at 300 W UV-vis and at 25oC 

(Figure 8). The maximum 99.34%% CBZ removal was obtained after PCD 

in PCI ww, at pH=5.0, at 300 W UV-vis and at 25oC, respectively (Figure 

8).
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Figure 8: Effect of increasing pH values after PCD in PCI ww for the removals of CBZ, at 300 W UV-vis and at 25oC. 

3.5. Effect of Increasing Photocatalytic Degradation Times.   

Increasing photocatalytic degradation times (30, 60, 90, 120, 150 and 180 

min) were operated with PCD for the removal of CBZ in PCI ww, at 300 

W UV-vis, at pH=5.0 and at 25oC, respectively (Figure 9). 44.02%, 

60.17%, 78.12%, 85.67% and 92.45% CBZ yields were obtained after 30 

min, 60 min, 90 min, 120 min and 150 min, respectively, after PCD in PCI 

ww, at 300 W UV-vis, at pH=5.0 and at 25oC, respectively (Figure 9). 

99.58% CBZ maximum removal was observed after 180 min with PCD in 

PCI ww, at 300 W UV-vis, at pH=5.0 and at 25oC (Figure 9). 

 

Figure 9: Effect of increasing photocatalytic degradation time after PCD in PCI ww for the removals of CBZ, at 300 W UV-vis, at pH=5.0 and at 25oC. 

3.6. Effect of Increasing CBZ Concentrations. 

Increasing CBZ concentrations (5, 10, 15 and 20 mg/l) were examined for 

the efficient CBZ removals in PCI ww with PCD, after 180 min, at 300 W 

UV-vis, at pH=5.0 and 25oC, respectively (Figure 10). 79.23%, 82.71% 

and 50.76% CBZ removals were measured after 5 mg/l, 15 mg/l and 20 

mg/l CBZ, respectively, after PCD in PCI ww, after 180 min, at 300 W 

UV-vis, at pH=5.0 and at 25oC, respectively (Figure 10). The maximum 

99.42% CBZ removal was obtained at 10 mg/l CBZ with PCD in PCI ww 

after 180 min, at 300 W UV-vis, at pH=5.0 and at 25oC, respectively 

(Figure 10).
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Figure 10: Effect of increasing CBZ concentrations with PCD in PCI ww for the removals of CBZ after 180 min, at 300 W UV-vis, at pH=5.0 and at 

25oC, respectively. 

3.7. Effect of Increasing TiO2/Ti3C2Tx MXene Heterostructure NCs 

Photocatalyst Concentrations. 

Different TiO2/Ti3C2Tx MXene heterostructure NCs concentrations (5, 

10, 20, 40 and 80 mg/l) were operated for the efficient CBZ removals in 

PCI ww with PCD after 180 min, at 10 mg/l CBZ, at 300 W UV-vis, at 

pH=5.0 and at 25oC, respectively (Figure 11). 45.29%, 67.44%, 82.74%,  

94.36% CBZ yields were found at 5 mg/l, 20 mg/l, 40 mg/l and 80 mg/l 

TiO2/Ti3C2Tx MXene heterostructure NCs, respectively, after 180 min, 

at 10 mg/l CBZ, at 300 W UV-vis, at pH=5.0 and at 25oC, respectively 

(Figure 11). The maximum 99.67% CBZ removal was obtained at 10 mg/l 

TiO2/Ti3C2Tx MXene heterostructure NCs, after 180 min, at 10 mg/l 

CBZ, at 300 W UV-vis, at pH=5.0 and at 25oC, respectively (Figure 11). 

 

Figure 11: Effect of increasing TiO2/Ti3C2Tx MXene heterostructure NCs photocatalyst concentrations with PCD in PCI ww for the removals of CBZ 

after 180 min, at 300 W UV-vis, at pH=5.0 and at 25oC, respectively. 

Conclusions 

The maximum 99.34%% CBZ removal was obtained after PCD in PCI 

ww, at pH=5.0, at 300 W UV-vis and at 25oC, respectively. 

99.58% CBZ maximum removal was observed after 180 min with PCD in 

PCI ww, at 300 W UV-vis, at pH=5.0 and at 25oC, respectively. 

The maximum 99.42% CBZ removal was obtained at 10 mg/l CBZ with 

PCD in PCI ww after 180 min, at 300 W UV-vis, at pH=5.0 and at 25oC, 

respectively. 

The maximum 99.67% CBZ removal was obtained at 10 mg/l 

TiO2/Ti3C2Tx MXene heterostructure NCs, after 180 min, at 10 mg/l 

CBZ, at 300 W UV-vis, at pH=5.0 and at 25oC, respectively. 
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As a result, the TiO2/Ti3C2Tx MXene heterostructure NCs material in PCI 

ww was stable in harsh environments such as acidic, alkaline, saline, and 

then was still effective process. When the amount of contaminant was 

increased, the TiO2/Ti3C2Tx MXene heterostructure NCs performance 

was still considerable. Finally, the combination of a simple, easy operation 

preparation process, cost effective and excellent performance makes this a 

novel TiO2/Ti3C2Tx MXene heterostructure NCs a promising option 

during PCD for the removals of CBZ antiepileptic drugs in PCI ww 

treatment. 
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