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Abstract 

Renal cell carcinoma (RCC) is a rare human cancer whose prevalence is rapidly rising, an early recognition is essential 

for the effective disease treatment. A statistical approach for biomarkers identification using metabolomics data has 

been attempted in this work. The metabolomics data for RCC is extracted from metabolomics workbench database with 

study ID ST001706. The study consisted 50 metabolites and 256 patients; in that 174 are normal individuals and 82 are 

RCC patients. From 50 Metabolites, top metabolites (as biomarkers) are identified using advanced statistical techniques 

such as the t-test, principal component analysis (PCA) and partial least square analysis (PLS). These statistical results 

identified eight biomarkers i.e. Trigonelline, Hippuric acid, 4-hydroxyhippuric acid, 4-amino hippuric acid, Mannitol, 

Pyruvic acid, Scyllo-Insitol and Deoxycholic acid. The Gaussian software was used to obtain the 3D Structures of the 

metabolites and to calculate their electronic parameters. Relative quantification of these biomarkers was done using 

Heatmap. ROC Curve Analysis has been performed to characterize biomarkers early in RCC. The biological 

significance of identified top metabolites has been evaluated by identifying the metabolic pathways in which the 

metabolites are involved. 
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Introduction 

Metabolomics is a relatively new approach of evaluating the composition 

of a biofluid (plasma or urine) or tissue in which small molecule 

metabolites are studied. This collection of small molecules, when 

analyzed and interpreted, can provide a distinct signature that can be used 

for diagnosis as well as to determine gross metabolic differences between 

a normal and a diseased state.1 Renal cell carcinoma (RCC) is another 

name for hypernephroma, renal cancer, or kidney cancer. It is the third 

most common urological oncology, accounting for 2-3% of all 

malignancies.2 RCC is a fast-growing cancer that frequently spreads to 

other organs such as the lungs.2 Among urogenital cancers, RCC has the 

highest mortality rate, and its prevalence has steadily increased. RCC is 

curable with surgery if detected in time, although a minority is at risk of 

recurrence.3 Symptoms of RCC are usually absent in the early stages. As 

the disease progresses, the patient may develop symptoms such as a lump 

on the back, hematuria, lower back pain, unexplained weight loss, fatigue, 

anemia, and hypertension. Some risk factors for the disease include a 

family history of RCC, dialysis treatment, hypertension, obesity and 

cigarette smoking. RCC is treated with surgery, radiation therapy, 

chemotherapy, immunotherapy, and targetedtherapy.4 
In metabolomic studies data-driven technology provides numerous 

insights into metabolic modelling and tends to help with pharmaceutical 

research, nutrition, and toxicity.5 The metabolomics approach in addition 

to biomarker discovery can identify new druggable targets because 

understanding the metabolic disorder and altered biochemical pathways 

that occur with disease progression can provide insight into possible new 

treatments for that disease by identifying inhibitors of altered pathways 

among new and already existing drugs. As a result, metabolomics lends 

itself to a two-pronged approach to the clinical problem, addressing both 

disease symptoms and providing novel treatment methods.6 
Biafran et al. (2021), reported Machine Learning-Enabled Renal Cell 

Carcinoma Status Prediction Using Multiplatform Urine-Based 

Metabolomics: The study cohort consisted of 105 RCC patients and 179 

controls separated into two sub cohorts: the model cohort and the test 

cohort. The model cohort was used to choose discriminating features 

using univariate, wrapper, and embedded techniques.7 

Allegan et.al. (2017), Preoperative fasting urine and serum samples were 

collected from patients with clinical renal masses and metabolomics and 

multivariate statistical analysis were performed using 1H NMR and 

GCMS (gas chromatography-massspectrometry). RCC had higher levels 
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of glycolytic and tricarboxylic acid (TCA) cycle intermediates compared 

to benign masses.8 

Zheng et al. (2016), used serum metabolome data from 104 participants, 

including healthy individuals and early-stage RCC patients, to train and 

validate the SOM model. For the early detection of RCC, a biomarker 

cluster of seven metabolites (alanine, creatine, choline, isoleucine, lactate, 

leucine, and valine) was identified. Using a biomarker cluster, the trained 

SOM model was able to classify 22 test subjects into the appropriate 

categories.9 

Bowie Xi et al. (2014), published a chapter on statistical analysis and 

modelling of mass spectrometry-based metabolomics data, in which the 

multivariate statistical techniques were used in metabolomics studies, 

ranging from biomarker selection to model building and validation.10 

Ska et al. (2012) conducted a classification study on diagnostic statistics 

double-check validation.11 

Kim et al. (2011), found that quinolinone, 4-hydroxybenzoate, and 

gentisate are differentially expressed with a false discovery rate of 0.26, 

and these metabolites are implicated in common amino acid and oxidative 

metabolism pathways, which is consistent with high tumour protein 

breakdown and utilisation and the Warburg effect.12 

Because targeted therapy for RCC has adverse effects, it is critical to 

identify potential targets for early diagnosis and treatment. Because 

metabolomics data is complex, there is a need for metabolomics research 

using statistical modelling to predict meaningful insights. 

This research used statistical methods and metabolomics data to find 

potential biomarkers for the early detection of Renal Cell Carcinoma. The 

following sections provide more information. 

Methodology: 

Data collection 

Olatomiwa, OB.; David, AG.; Machine Learning-Enabled Renal Cell 

Carcinoma Status Prediction Using Multiplatform Urine-Based 

Metabolomics, J. Proteome Res. 2021, 20, 7, 3629–3641 - Olatomiwa O. 

Biafran et.al., Collected Data from liquid chromatography–mass 

spectrometry (LC–MS) and nuclear magnetic resonance (NMR) and 

potential metabolomic panels for RCC were discovered using machine 

learning (ML). The study cohort consisted of 82 RCC patients and 174 

controls. The data for this study is available in Metabolomics workbench 

database (https://www.metabolomicsworkbench.org/) with Study IDs: 

ST001705 and ST001706.6 

Data analysis 

Various statistical techniques like median normalization, t-test, PCA, PLS 

were used to analyze the data. 

The Median Normalization is based on the assumption that the samples of 

a data set are separated by a constant. It scales the sample values on a 

common scale to have same median. By choosing the median instead of 

the mean, it helps to remove some of the outliers in the data.13 

The t-test is used to evaluate if a method has an effect on both samples or 

if the groups are different from each other. An unpaired t-test compares 

the averages/means of two independent or unrelated groups to see whether 

there is a statistically significant difference between them.14 

Principal Component Analysis is a dimensionality reduction method for 

extracting important variables (in the form of Principal components) from 

a large number of variables in a data set.15 

Instead of using the original data, partial least squares (PLS) reduce the 

data to a smaller set of uncorrelated components and performs least 

squares regression on these components. It solves the multicollinearity 

problem by constructing latent vectors that explain both the independent 

and dependent variables. When more than one dependent variable needs 

to be predicted, this method is utilized.16 

The dataset obtained had a wider range of values initially the data was 

preprocessed using median normalization. The significant metabolites 

were   then   identified   by applying unpaired t-test on the Normalized 

Data. Top metabolites were selected as those with a significance value (P 

value) of less than 0.05 and were employed in further analysis. Following 

the t test; the top significant metabolites were further analyzed using the 

PCA method. The principal components were identified, and top 20 

metabolites are extracted based on Variable Importance Number using 

statistica Software, which were then validated and considered as RCC 

biomarkers. Following PCA, the top metabolites from the t test were 

validated using the PLS method. 

 The top metabolites reported after PCA and PLS were compared to the 

literature, and the common metabolites found in all three were considered 

as potential biomarkers, which were subsequently studied to learn more 

about their toxic effects in Renal Cell Carcinoma. 

Quantum chemical studies were performed on Identified Biomarkers to 

Study their Toxicity using Gaussian 09 Software. All the geometry 

optimizations were carried out using Density Functional Theory (DFT) 

employing 6-31+ G(d) basis set and the B3LYP functional.17 Then the 

global electrophilicity index ( ) of identified biomarkers was calculated 

, which measures the energy of stabilization when an optimal electronic 

charge transfer from the environment to the system occurs. In order to 

prove the toxicity, Toxtree Tool18 was used and Biological Significance 

of Biomarkers associated with Renal Cell Carcinoma was studied by 

identifying the molecular pathways in which metabolites are involved. 

Results and Discussion: 

1. Identifying biomarkers using Predictive Statistical 

modelling: 

1.1 Data preprocessing by Median Normalization: 

The data preprocessing was done by imputing the missing values and 

Median Normalization. The missing values were identified and they were 

replaced with median values. The Median Normalization was carried out 

for each metabolite. Those Normalized Values were used in further 

Analysis to identify Biomarkers. 

1.2. T- test: 

For the Normalized dataset unpaired t test was carried out using Statistical 

Analysis Module of Emotionalist Tool19 

(https://www.metaboanalyst.ca/). The metabolites having the p-value less 

than 0.05 are considered as the significant metabolites which have a 

significant effect on Renal Cell Carcinoma. Based on the p-value 33 

metabolites are identified significant metabolites and those were taken for 

further processing (Table1) 

 

S.no 

 

Metabolite Name 

 

P. Value 

1 Hippurate_2 7.72E-23 
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2 Hippurate_3 6.13E-22 

3 Hippurate_4 9.38E-21 

4 4-hydroxyphenylacetate_1 7.51E-19 

5 Acetoacetate_2 8.25E-19 

6 Aminohippurate 2.66E-14 

7 Trigonellinamide_3 2.91E-13 

8 Trigonellinamide_2 5.53E-12 

9 Trigonellinamide_1 3.91E-11 

10 Pyruvate 4.86E-11 

11 Scylloinositol 7.49E-10 

12 Glycine 1.89E-09 

13 Acetoacetate_1 5.25E-09 

14 Acetone 7.27E-08 

15 Trigonelline_2 7.90E-08 

16 Lactate 2.51E-07 

17 Trigonelline_1 7.67E-06 

18 Acetate 6.33E-05 

19 Methyl guanidine 0.0001217 

20 Hydroxyhippurate 0.00015553 

21 Hippurate_1 0.00015557 

22 UNK_2 0.00020524 

23 Bile acid_1 0.0006775 

24 Dimethyl amine 0.00070915 

25 Indoxylsulfate 0.00088526 

26 Citrate 0.00093854 

27 Mannitol_1 0.0016132 

28 UNK_1 0.0020896 

29 Mannitol_2 0.0061651 

30 UNK_8 0.011314 

31 Hypoxyxanthine_1 0.019981 

32 3-Hydroxyisovaleric acid 0.035289 

33 Bile acid_2 0.049154 

Table 1: t-test results Showing 33 Significant Metabolites 

1.3. Principal Component Analysis (PCA) 

The principal component analysis was performed using statistical package 

statistica 13.3 27 (TIBCO Software Inc) on top 33 metabolites obtained 

after t-test. The results of PCA in Statistica gave the significance values 

of metabolites in the power column which implies the probability of 

metabolite responsible for causing the disease and based on the value of 

power the ranking is given in the variable importance column (Table 2). 

The top 20 ranking metabolites were considered for further analysi

 

Variable Power Variable Importance 

Hippurate_2 0.983053 1 

Hippurate_1 0.981645 2 

Hydroxy Hippurate 0.981619 3 

Hippurate_3 0.978545 4 

Hippurate_4 0.964275 5 

Trigonellinamide_1 0.953488 6 

Trigonellinamide_2 0.953253 7 

4-hydroxyphenylacetate_1 0.936599 8 

Acetoacetate_2 0.936507 9 

Trigonellinamide_3 0.936067 10 

Acetoacetate_1 0.908971 11 

Scylloinositol 0.865268 12 

Trigonelline_2 0.848829 13 

Mannitol_1 0.845410 14 

Trigonelline_1 0.840769 15 

Mannitol_2 0.826084 16 

Bile acid_1 0.808277 17 

Bile acid_2 0.799725 18 

Pyruvate 0.780170 19 

Amino Hippurate 0.767515 20 

Table 2: PCA Results Showing Top 20 Metabolites 
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1.4. PLS Results 

PLS analysis was performed to validate the results from PCA. The PLS 

was also Performed by statistical software and the variable importance of 

each metabolite in the dataset is given in VIP column which implies the 

significant values of metabolites. The ranking was provided according to 

the VIP column (Table 3). The metabolites with top 20 ranks were 

selected as significant metabolites for identification of biomarkers. 

Variable VIP Importance 

UNK_8 2.180183 1 

UNK_2 1.735567 2 

Trigonelline_2 1.643086 3 

Trigonelline_1 1.497001 4 

Hippurate_1 1.446959 5 

Hydroxy Hippurate 1.446872 6 

amino Hippurate 1.399427 7 

Glycine 1.287609 8 

Indoxyl sulfate 1.218203 9 

Scylloinositol 1.190392 10 

Hippurate_2 1.165740 11 

Hippurate_3 1.073573 12 

Mannitol_1 0.983081 13 

Hippurate_4 0.918059 14 

Bile acid_2 0.887998 15 

3-Hydroxyisovaleric acid 0.755359 16 

Pyruvate 0.718033 17 

Acetone 0.662696 18 

Methyl guanidine 0.651489 19 

Dimethyl amine 0.647092 20 

Table 3: PLS Results Showing Top 20 Metabolites 

 

The top metabolites obtained after both PCA and PLS were compared 

with the literature and the metabolites present in all three i.e. PCA, PLS 

and literature were considered as the potential biomarkers. They were 8 

metabolites which were common those are Trigonelline, Hippuric acid, 4-

hydroxy hippuric acid, 4-amino hippuric acid, Mannitol, Pyruvic acid, 

Scylla- Inositol and Deoxycholic acid and these were further explored to 

know their toxic effects in Renal Cell Carcinoma. 

2. Electronic structure analysis of identified biomarkers 

Quantum Chemical Calculations was performed using Gaussian 09 

Software on 8 Biomarkers. All the Geometry Optimizations were carried 

out using Density Functional Theory (DFT) employing 6-31+G (d,p) 

basis set and the B3LYP Functional to get their HOMO and LUMO values 

which were further used for calculating global electrophilicity index 

(Table 4). 

Biomarker name EHOMO ELUMO µ IP EA ᾐ ᾠ 

Trigonelline -0.27845 -0.00969 -0.14407 0.27845 0.00969 0.13438 2.10 

Hippuric acid -0.26858 -0.0116 -0.14009 0.26858 0.0116 0.12849 2.07 

4-Hydroxy hippurate -0.34151 -0.03411 -0.18781 0.34151 0.03411 0.1537 3.12 

Amino hippurate -0.33318 -0.02479 -0.178985 0.33318 0.02479 0.154195 2.82 

Mannitol -0.26769 -0.01304 -0.140365 0.26769 0.01304 0.127325 2.10 

Pyruvic acid -0.4292 -0.01653 -0.222865 0.4292 0.01653 0.206335 3.27 

Scyllo-Insitol -0.28024 -0.00886 -0.14455 0.28024 0.00886 0.13569 2.09 

Deoxycholic acid -0.20717 -0.03622 -0.121695 0.20717 0.03622 0.085475 2.35 

 

Table 4: Global Electrophilicity index values of Biomarkers 

The electrophilicity Index values of these biomarkers are High (>2), 

which denotes that these all are toxic metabolites and highly Responsible 

for the Disease. Hence the electrophilicity is responsible for the observed 

RCC. 

 3. Toxfree Tool 

Based on the decision tree approach by applying Cramer rule to the 

SMILES notation of Biomarkers, Toxfree software gives the Class of 

Toxicity. The software makes the decision based on the information 

available in the literature and classify the metabolites as High toxic, 

Intermediate Toxic and Low toxic. 18 The toxicity of top 8 metabolites 

according to Toxfree software is shown in Table 5

 

Metabolite name Class of Toxicity Toxicity Level 

Trigonelline Class III High toxic 

Hippuric acid Class I Low toxic 

4-Hydroxy Hippuric acid Class I Low toxic 
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Amino Hippuric acid Class I Low toxic 

Mannitol Class I Low toxic 

Pyruvic acid Class I Low toxic 

Scyllo-Insitol Class I Low toxic 

Deoxycholic acid Class III High toxic 

 

Table 5: Toxicity of top metabolites according to Toxfree software 

4. Relative Quantification of metabolites by Heatmap 

Heatmap is used to identify features that are unusually high/low using 

stronger intensities of one color to represent lower levels of the variable, 

and increasing intensities of a different color to represent higher levels.19 

Heat Map of Renal Cell Carcinoma Biomarkers was constructed using 

Emotionalist 5.0 Tool (Figure 1) up regulated and down regulated 

metabolites can be seen clearly in the Table 6 

 
Figure 1: Heat Map of RCC Biomarkers 

Upregulated Metabolites Downregulated Metabolites 

Mannitol Trigonelline 

Deoxycholic acid Scyllo-Insitol 

Pyruvic acid 4 - hydroxy hippuric Acid 

 Amino hippuric Acid 

 Hippuric Acid 

Table 6: Up regulated and down regulated metabolites 

The concentration of up regulated Metabolites like Mannitol, 

Deoxycholic Acid and Pyruvic acid is increased in RCC patients when 

compared to Normal Healthy Individuals. Similarly for Down Regulated 

Metabolites like Trigonelline, Scyllo-Insitol, 4 - hydroxy hippuric acid, 

amino hippuric acid and hippuric acid, the concentration decreased in 

RCC patients when compared to Normal Healthy Individuals. From these 

variations in the concentrations of the metabolites in diseased patients in 

comparison to normal healthy individuals, it can be concluded that a set 

of metabolites are down regulated, while another set were unregulated 

significantly in diseased individuals which can help in prognosis of the 

Renal cell carcinoma These results were consistent with the existing 

literature. 

 5. ROC Curve Analysis 

A receiver operating characteristic (ROC) analysis was performed using 

Emotionalist 5.0 on these 8 biomarkers to assess their diagnostic accuracy 

and characterize them in early stage of RCC.20 The AUC, sensitivity, 

specificity, and 95 % confidence intervals of the eight identified Potential 

urinary biomarkers for RCC early diagnosis are shown in Table 7. To 

evaluate the diagnostic accuracy of these identified potential urinary 

biomarkers for RCC, a predictive model for patient classification was 

constructed using each identified biomarker. Pyruvic acid and 

Deoxycholic acid showed a AUC Value of 0.854 (Figure 2) and 0.807 

(Figure 3) respectively and regarded as best biomarkers having high 

predictive accuracy and better distinguish the Control and RCC group 

when compared to other 6 biomarkers. Overall, 8 metabolites showed 

clinical potential diagnostic value, with an AUC of 0.923 (Figure 4) and 

an 81 % Predictive Accuracy (Figure 5).   It has been observed that 

combination of biomarkers is more helpful than single biomarkers for 

early diagnosis of the disease. 
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Figure 2: AUC – ROC Curve of Pyruvic acid 

 

Figure 3: AUC – ROC Curve of Deoxycholic acid 

 

 
Figure 4: AUC – ROC Curve of All Metabolite Panel 
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Figure 5: Predictive Accuracy with All Metabolite Panel 

 

Table 7: ROC Curve Analysis 

 

6. The metabolic pathways in which identified metabolites are 

involved 

6.1. Trigonelline: 

Márcia S. Monteiro et al (2016) in ‘‘Nuclear Magnetic Resonance 

metabolomics reveals an excretory metabolic signature of renal cell 

carcinoma’’ Reported that Trigonelline could be related to certain foods 

(e.g. coffee), but it can also be produced by endogenous niacin 

methylation. Reduced excretion of Trigonelline was found to be reported 

in patients with liver cancer, ovarian cancer, pancreatic ductal 

adenocarcinoma, and lung cancer. This change, together with the 

decreasing tendency of trigonelline shows that nicotinate and 

nicotinamide metabolism is disturbed. Putative interpretation of the 

identified metabolites changing in RCC compared to controls revealed 

possible unspecific effects involving Hippurate, trigonelline, and 

trigonelline, emphasizing the importance of diet and gut microflora, as 

well as nicotinate and nicotinamide metabolism and anti-oxidative 

mechanisms as less specific systemic cancer effects.20 The Nicotinate 

and Nicotinamide Pathway in which Trigonelline metabolite is collected 

from KEGG Pathway Database  

6.2 Pyrvuic acid: 

Márcia S. Monteiro et al (2016) in ‘‘Nuclear Magnetic Resonance 

metabolomics reveals an excretory metabolic signature of renal cell 

carcinoma’’ Reported that the increased levels of excreted pyruvic acid 

imply enhanced glycolysis activity. Increased glycolytic flux and altered 

TCA cycle function are well-known cancer hallmarks, affecting not only 

cellular energetic efficiency but also anabolic/biosynthetic efficiency, 

because intermediates in these pathways are diverted to the synthesis of 

proteins, nucleic acids, lipids, and cholesterol, and generally aid in the 

maintenance of cellular redox, genetic, and epigenetic status required for 

cancer cell proliferation.20 The Glycolysis Pathway in which pyruvic acid 

metabolite is collected from KEGG Pathway Database  

6.3. Deoxycholic acid: 

Márcia S. Monteiro et al (2016) in ‘‘Nuclear Magnetic Resonance 

metabolomics reveals an excretory metabolic signature of renal cell 

carcinoma’’ Reported that the presence of higher levels of Deoxycholic 

acid (Bile Acid) in both blood and urine of hepatocellular carcinoma 

patients as bile acid resonances implies that RCC has an influence on 

endogenous cholesterol metabolism. Bile acids are considered to be a 

significant indication of Liver injury. However, however at point, the 

exact connection between these compounds and RCC is unclear.20 The 

Secondary Bile Acid Biosynthesis Pathway in which Deoxycholic acid 

metabolite is collected from KEGG Pathway Database 

6.4. Scyllo-Insitol / Myo-inositol: 
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Piotr Popławski et.al, (2017) in ‘‘Integrated transcriptomic and 

metabolomic analysis shows that disturbances in metabolism of tumor 

cells contribute to poor survival of RCC patients’’ reported that in RCC 

tumors Myo-inositol level was reduced by 16-fold and was associated 

with decreased MIOX. However, given the lower myo-inositol levels in 

RCC tumours, a decrease in MIOX expression may appear counter-

intuitive. Decreased myo- inositol level in RCC tumours may be the result 

from increased excretion in urine. This study suggested that Myo-inositol 

and Myo-inositol pathway may offer attractive targets for potential 

treatment of RCC patients.21 The Inositol Phosphate Pathway in which 

Myo-inositol metabolite is collected from KEGG Pathway Database 

6.5. Mannitol: 

Leuthold et al. (2017) conducted a comprehensive metabolomic and 

lipidomic profiling of human and porcine kidney tissue study using a LC-

QTOF-MS analytical approach. PCA analysis showed differentiation in 

aqueous extracted metabolites from RCC compared to adjacent nontumor 

tissue. The metabolite level of metabolite Mannitol is increased in the 

RCC tissue. This Study concluded that Disruption in fructose and 

mannose metabolism pathway of Mannitol is responsible for RCC.22 The 

Fructose and Mannose metabolism pathway in which Mannitol metabolite 

is collected from KEGG Pathway Database  

6.6. Hippuric acid, 4-hydroxyhippuric acid and 4-aminohippuric 

acid: 

Daniela Rodrigues et.al, (2017) Márcia, Monteiro.; Carmen, Jerónimo.; 

Rui, Henrique.; Luís, Belo.; Maria de Lourdes Bastos, Paula Guedes de 

Pinho, Márcia, Carvalho.; Renal cell carcinoma: a critical analysis of 

metabolomic biomarkers emerging from current model 

systems,Translational Research,2017,180,1-11 Hippuric acid, 4-

hydroxyhippuric acid and 4-aminohippuric acid, phenylalanine 

downstream metabolites showed potential as RCC biomarkers. It was 

found diminished in urine of RCC patients, suggesting that cancer cells 

rapidly metabolize it, which might cause impaired secretion into renal 

tubules. Hippuric acid was also found decreased in other renal diseases, 

emphasizing its poor specificity as an individual biomarker for RCC 

detection.23 The Phenylalanine Pathway in which Hippuric acid, 4-

hydroxyhippuric acid and 4-aminohippuric acid metabolites is collected 

from KEGG Pathway Database  

The above-mentioned metabolic pathways have been associated with 

Renal Cell Carcinoma in the literature, indicating that alterations in these 

pathways can cause Renal Cell Carcinoma. 

Conclusion 

Renal cell carcinoma (RCC) is a heterogeneous disease that is usually 

asymptomatic until late stage. There is an urgent need for RCC specific 

biomarkers identification that may be exploited clinically for diagnostic 

and prognostic purposes. In this study, metabolomic data was statistically 

explored for the identification of biomarkers in Renal Cell Carcinoma. 

The raw dataset obtained from Metabolomics Society was preprocessed 

using Emotionalist 5.0 , a web based interface used for Metabolomics 

Data Analysis , and further statistical methods such as t-tests, PCAs, and 

PLS were applied using Statistical Software to identify Significant 

Metabolites. The top ranking eight metabolites obtained after both PCA 

and PLS were compared with the literature and the common metabolites 

present in all the three were considered as the potential biomarkers. 

Trigonelline, Hippuric acid, 4-hydroxy hippuric acid, 4-amino hippuric 

acid, Mannitol, Pyruvic acid, Scyllo-Insitol and Deoxycholic acid are 

considered as the Biomarkers of Renal Cell Carcinoma. These metabolites 

were further explored to understand their effect on the body. The quantum 

chemical studies were performed using Gaussian Software to evaluate 

their Electronic Parameters and Toxicity. A Toxicity Prediction tool 

called Toxfree was used to classify the biomarkers on the basis of toxicity, 

which showed 2 metabolites i.e. Trigonelline, Deoxycholic acid in the 

high toxic class (Class III) and 6 metabolites i.e. Hippuric acid, 4-hydroxy 

hippuric acid, 4-amino hippuric acid, Mannitol, Pyruvic acid and Scyllo-

Insitol in Low Toxic Class (Class I). Relative Quantification using 

Heatmap showed that Mannitol, Deoxycholic Acid and Pyruvic acid are 

upregulated metabolites and Trigonelline, Scyllo-Insitol, 4 - hydroxy 

hippuric acid, 4- amino hippuric acid and hippuric acid are downregulated 

metabolites. From ROC curve analysis it has been observed that 

combination of biomarkers is more helpful than single biomarkers for 

early diagnosis of the disease. The toxic metabolites were further explored 

for their metabolic pathways and their association with Renal Cell 

Carcinoma using the literature. It can be predicted that the disturbance in 

the identified metabolic pathways due to these eight metabolites may be 

the cause of observed Renal Cell Carcinoma. 

Abbreviations 

RCC Renal Cell Carcinoma 

MIOX Myo-Inositol Oxygenase 

SMILES Simplified Molecular Input Line Entry System 

HOMO Highest Occupied Molecular Orbital 

LUMO Lowest Unoccupied Molecular Orbital  

AUROC Area Under Receiver Operating Characteristics 

LC–MS Liquid Chromatography–Mass Spectrometry 

AUC Area Under Curve 

ROC Receiver Operator Characteristic 

PCA Principal Component Analysis 

PLS Partial Least Square 

DFT Density Functional Theory 
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