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Abstract 

Ventricular septal defect (VSD) known as one of the most prevalent types of congenital heart defects (CHD). Both genetic and 

environmental risk factors are essential in its development. Methylenetetrahydrofolate reductase (MTHFR) is one of the 

fundamental regulatory enzymes in the homocysteine metabolic pathway, and related coding genes may play a crucial role in 

CHDs.  GSTP1 genotypes codes Glutathione S-transferases (GSTs) play an essential role in detoxification and may increase 

the risk of DNA damage elicited by pesticide exposure. 

This study determined the association of C677T and G1793A polymorphisms of the MTHFR gene and polymorphism of the 

GSTP1 gene in Iranian VSD subjects. A total of 98 children with VSDs and 89 healthy children were entered in this study. 

Genomic DNA was extracted from the blood samples of all the cases. The restriction fragment length polymorphism 

polymerase chain reaction (PCR-RFLP) method amplifies the C677T and G1793A and GSTP1 polymorphism. 

The genotype frequencies of CC, CT, and TT of MTFHR C677T gene among the studied cases were 59%, 33%, and 7%, 

respectively, compared to 58.5%, 38%, and 3.5% controls. 

The genotype frequencies of GG, GA, and AA of MTFHR G1793A gene among the studied cases were 97%, 0%, and 0%, 

respectively, compared to 93%, 7%, and 0% controls. 

For the GSTP1 gene polymorphism, the frequencies of the genotypes of AA, AG, and GG among the cases were 42%, 51%, 

and 3%, respectively, while the frequencies were 40%, 49%, and 11%, respectively, among control subjects. 

Significant differences were noticed (p < 0.05) in AA VS. AG genotype between cases and control subjects. 

Keywords: MTHFR; GSTP1; polymorphism; congenital heart disease; ventricular septal defect 

1. Introduction 

Congenital heart defects (CHD) are reported as the most frequent type of 

congenital anomalies. Universal recorded CHD prevalence increased in 

recent years from 0.6 before 1935 to 0.9 in 1000 live delivery, and the 

most significant belongs to Asia, with 9.3 per 1,000 live births [1]. 

Currency of CHD and severe forms of it has risen by 11% and 19% after 

2000, respectively [2]. 

The mean prevalence of CHD has been estimated at 12.30 per 1000 live 

births, with a yearly prevalence of 17.51 per 1000 live births in IRAN [3]. 

Overall ventricular septal defects account for up to 40% of all congenital 

cardiac malformations, and it is the most frequent of CHDs (27%) in 

IRAN [4,5]. 

The etiology of VSD is primarily unexplained. Genetic and 

environmental factors may have a role. Most ventricular septal defects 
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occur sporadically, with no apparent cause [6]. Some VSDs may have a 

genetic link causing heart problems to occur more frequently in certain 

families [7]. Familial compilation and twin research indicated 

susceptibility to this theory [8]. 

Completing the human genome project and the universal haplotype map 

project, converted single nucleotide polymorphisms (SNPs) to available 

markers to compute individuals' susceptibility to complicated illnesses, 

treatment efficiency, and adverse drug reactions [9-11]. This, in turn, 

facilitates clinicians and healthcare workers in taking proper actions. 

Difference methods have been affirmed for the genotyping of SNPs. 

Standard techniques include real-time PCR, DNA sequencing, restriction 

fragment length polymorphism (RFLP) analysis, and amplification 

refractory mutation system PCR (ARMS-PCR) [12-15]. 

Methylenetetrahydrofolate reductase (MTHFR) converts a molecule 

called 5, 10-methylenetetrahydrofolate (folic acid or vitamin B9) to 5-

methyltetrahydrofolate (called levomefolic acid or active folate as well). 

Levomefolic acid can detoxify compounds in the body by moving its 

methyl group [16-17]. On the other hand, proper methylation enables the 

body to detoxify some potentially risky compounds generated by, or taken 

into, the body. 

In the conversion of homocysteine to methionine, levomefolic acid or 

active folate is crucial. Methionine is necessary for producing glutathione, 

the body's main antioxidant product. Methionine is needed to produce 

myelin as well [18]. 

The body cannot produce homocysteine-derived products without this 

enzyme, and homocysteine upsurges in blood and other tissues. 

Homocysteine is mandatory for the production of cysteine, methionine, 

and other necessary mediators are needed for an assortment of metabolic 

processes like neurotransmitters dopamine, serotonin, and melatonin [19]. 

Raised homocysteine levels can lead to adverse affection on mental health 

and mood. Correlation of elevated homocysteine levels and birth defects, 

complex pregnancies, cardiovascular disease, high blood pressure, 

glaucoma, ischemic stroke, and atherosclerosis is reported [20, 21]. 

The MTHFR gene produces MTHFR and has been mapped to 

chromosome 1, region 1p36.3, and comprised 11 exons ranging in size 

from 102 to 432 bp [14, 15]. 

Several polymorphisms in the MTHFR gene have been identified. 

Because of researches, nearly half of the population may have an MTHFR 

gene mutation, and the two most problematic mutations are C677T and 

A1298C mutations, which denote the placement of the mutation on the 

gene [22]. 

Among them, A1298C (rs1801131) has been extensively considered, and 

its influence on DNA synthesis, genome stability, and sustaining proper 

homocysteine levels in the blood was demonstrated [23-26]. 

C677T is changing an alanine (A) into a valine (V) residue at codon 222 

(A222 V) of the corresponding amino acid sequence, and several studies 

suggest this polymorphism performs an essential role in the etiology of 

stroke, neural tube defects, and congenital heart disease (CHD) [23 ,27-

29]. 

Pishva and coworkers determined the association of C677T 

polymorphism of the MTHFR gene in Iranian VSD subjects. The 

frequencies for CC and CT genotypes of the MTHFR gene were 51.2% 

and 48.8%, respectively, in VSD patients compared to 56.8% and 43.2%, 

respectively, in control subjects [30]. But in Zhang T, study revealed no 

association between MTHFR C677T and A1298C polymorphisms and 

ventricular or atrial septal defect risk [31]. Kocakap BD results suggest 

that MTHFR 1298C allele is a risk factor for conotruncal heart disease 

[32]. 

In in-vitro experiments, Homozygosity for C677T, homozygosity for 

A1298C, and compound heterozygosity for A1298C and C677T are 

associated with a reduced enzyme activity of 45, 68, and 41%, 

respectively [33]. 

Recently, a novel polymorphic site, G1793A, in exon 11, prompting an 

arginine (R) to glutamine (Q) switch (R594Q) were identified [34]. Some 

studies repost its function on cardiovascular disease, and the theory of 

role-playing in CHD is concerned [35]. However, its universal 

distribution, especially in our country, was not adequately analyzed. 

Another gene, GSTP1, codes Glutathione S-transferases (GSTs), a family 

of enzymes that function in xenobiotic metabolism and play an essential 

role in detoxification. 

Studies propound the susceptibility of its relationship with childhood 

asthma, CAD in patients with type 2 diabetes mellitus, and malignancies 

as breast cancer and hepatocellular carcinoma [35- 37]. The soluble GSTs 

are classified into four main classes: alpha, mu, pi, and theta [38]. 

Fetal inherited GSTP1 Ile105Val polymorphism may modify the 

metabolism and excretion of xenobiotics from fetal tissue and raise the 

risk of congenital heart disease (CHD). Studies aimed to analyze the 

effects of GSTP1 genetic polymorphism (Ile105Val), and maternal 

environmental exposure on CHD risk revealed no significant differences 

in Ile105Val genotype frequencies between the children with CHD and 

the healthy children and no evidence of meaningful interaction between 

the maternal exposures and GSTP1 polymorphism [21]. 

No studies used a broad group of individuals to determine the frequency 

of the three genotypes within the general populations. In this study, we 

investigated the allelic frequencies of the C677T and G1793A 

polymorphism of the MTHFR gene and GSTP1 genotypes in 98 Iranian 

children. 

2. Materials and methods 

Our study is a case-control study that considers patients younger than 11 

years old with perimembranous or muscular VSD diagnosed at the 

Pediatric Cardiology Unit of Taleghani children's Hospital in Gorgan, 

Iran, during April 2016- 2018. The appropriate local authority ethically 

approves it. 

2.1. Subject Recruitment 

A total of 187 subjects were categorized into two comparative groups, 98 

VSD patients versus 89 control cases. Control subjects were selected from 

89 age- and sex-matched children admitted to hospital for elective 

surgery, and outpatient non-cardiac patients from the same geographic 

area following clinical assessment included thorough history taking and 

complete physical evaluation. 

Family history, nationality, mother's age, mother's history, birth weight, 

familial marriage, and extra-cardiac anomalies were evaluated in all 

cases. In both groups, patients, and controls, information was obtained by 

a questionnaire. The demographic data were showed in Table 1 in detail. 

 

 

Characteristic Patient Control P-value 

Age (month) 17.07 ±24.59 18.13 ±19.67 P=0.124 

Mother's age (year) 28.26 ±5.7 29.46 ±5.22 P= 0.127 

Birth Weight(Kg) 3.05 ±0.81 3.18 ±0.56 P= 0.177 
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Weight(Kg) 8.43 ±5.73 9.57 ±3.98 P=0.129 

Gender, male/female 44/54 41/48 P= 0.887 

Familial marriage, yes/no 29/69 27/62 P= 1 

Familial history, yes/no 12/86 0/89 P≤0.001 

Extra Cardiac, yes/no 2/96 1/88 P= 0.373 

Mother's history, yes/no 8/90 1/88 P≤0.05 

Table 1.Demographic characteristics of study subjects 

Cardiac evaluation of both groups included 12 lead electrocardiograms 

(ECG), chest radiography, and transthoracic echocardiography. In all 

cases, diagnoses were confirmed by Color-Doppler echocardiography. 

All specimens were collected with informed consent from the participants' 

executor. DNA samples were prepared from peripheral blood samples 

anti-coagulated with ACD, using the standard phenol-chloroform 

extraction method. 

Exclusion criteria were significant CHDs (such as single ventricle, double 

outlet RV, truncus arteriosus), distinct syndromic associations as 

VACTERLS, and recognized chromosomal anomaly including trisomy 

18 or 21. 

2.2. Genotyping assay 

To determine the genotypes of MTHFR and GSTP1 genes, genomic DNA 

was magnified first by the respective primers using the polymerase chain 

reaction (PCR) technique. The PCR amplification for all the individual 

polymorphisms was done in a total volume of a 25 μL reaction mix 

consisting of 10 pmol of each primer and the Mastermix (i-DNA 

Biotechnology (M) Sdn Bhd, Kuchai Lama, Kuala Lumpur, Malaysia) 

and the template DNA. A negative control containing no genomic DNA 

and positive control of recognized genotype were always held in the set 

of reactions. All of the PCR cyclings were given to an iCycler machine 

(BioRad Laboratories, Hercules, CA, USA). The amplified PCR products 

for all the three gene polymorphisms were separated at 2%–4% agarose 

gel (Bioline, London, UK). The agarose gel was stained in ethidium 

bromide and visualized using Alpha Imager (Alpha Innotech, San 

Leandro, CA, USA). The PCR products of the respective genes were 

digested with 2–4 units of the individual restriction enzymes (Thermo 

Fisher Scientific, Inc, provided by Research Instruments Sdn Bhd, 

Petaling Jaya, Malaysia) with 10× Fast Digest Green Buffer in a final 

volume of 30 μL reaction mixture. Similar results were received when 

genotyping was performed for 15% of the specimens on two separate 

occasions. 

2.3. Statistical Analysis 

Data analysis was done via SPSS version 18.00 (SPSS Inc, South Wacker 

Drive, Chicago, IL, USA). Genotype and Alleles distribution were tested 

for deviation from the Hardy-Weinberg by a Chi-Square test. To illustrate 

the association, the odds ratio (OR) and its 95% confidence intervals (CI) 

were used and p < 0.05 considered in all tests to be statistically significant. 

3. Results 

A total of 187 abstracts that met the inclusion criteria were retrieved 

through history taking and physical examination, 98 VSD children, and 

89 normal controls. 

The mean age was 17.07 ±24.59 in the study group and 18.13 ±19.67 in 

the control group. The mean weight of case subjects was 8.43 ±5.73, 

whereas the mean weight of controls was 11.57 ±3.98. The demographic 

data were listed in Table 1 in detail. 

In childhood patients with VSD, the genotype frequencies of the MTHFR 

C677T polymorphism and C & T allele were as follows: TT 7, CT 33, CC 

58, C 149, and T 47. Details of the two VSD groups, muscular and peri-

membranous, were represented in Table 1. 

In the control group, the homozygous MTHFR 677TT genotype was 

present in 3 (3.5%), the CT genotype in 34 (38%), and the CC genotype 

in 52 (58%) individuals. The resulting OR for patients carrying the 

homozygous TT genotype compared to the controls was 0.47 (CI, 0.11-

1.9; P=0.34). Comparing VSD patients to the controls, the frequencies of 

MTHFR C677T genotypes did not show statistically significant 

differences between study groups (VSD subtypes and control). 

The merge MTHFR C677T allele frequency determined using the 

random-effects model was 24% in the VSD patients and was 22% in the 

control. These were 76% in the VSD patients and were 78% in the control 

respectively for MTHFR –677C allele. 

Among the 187 individuals, the MTHFR G1793A genotypes GG were 94 

VSD & 82 control, GA was 4 VSD & 5 control, and AA was just two in 

the control group. The frequency of A allele of the MTHFR G1793A 

varied from .02% in the VSD group to .05% in control, and all of the 

populations in this study were in the Hardy–Weinberg law of equilibrium 

(P > 0.05). Details of the two VSD groups, muscular and peri-

membranous, were represented in Table 3. 

The resulting OR for patients carrying the homozygous AA genotype 

compared to the controls was not significant. The frequencies of MTHFR 

C1793A genotypes did not show statistically significant differences 

between different study groups (VSD subtypes and control). Interestingly, 

it was noted that 94% of patients had the GG genotype, but there was no 

significant difference between the two groups. 

The pooled MTHFR G1793A allele frequency was 2% in the VSD 

patients and 5% in the control group. The frequencies for MTHFR –

1793G allele were 98% and 95% in the VSD patients in the control group, 

respectively. 

Frequencies of the GSTP1 polymorphism in VSD patients were as 

following AA 39, AG 50, GG 9, A 128 and G 68. In muscular VSD patient 

frequencies were as follows: AA, n=19 (42%); AG, n=23 (51%); GG, n=3 

(7%); A, n=61(68%) and G, n=29(32%).In peri-membranous VSD 

patients were: AA, n=21 (40%); AG, n=27 (49%); GG, n=5 (11%); A, 

n=69(65%) and G, n=37(35%). Results of subgroup analyses are shown 

in the Tables 2 and Table 3. 

polymorphism Genotype Patients(n=98) Normal 

(n=89) 

TEST OR CI 95% P value 

MTHFR C677T CC 58 (59%) 52 

(58.5%) 

CC vs. 

CT 

1.149 0.6257 to 2.1105 0.757 

CT 33 (34%) 34  

(38%) 

CT vs. 

TT 

0.416 0.099 to 1.747 0.314 
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TT 7 (7%) 3 

(3.5%) 

CC vs. 

TT 

0.478 0.1175 to 1.9450 0.341 

allele C 149(0.76) 138 

(0.78) 

C vs. T 0.9189 0.5680 to 1.4866 0.807 

T 47(0.24) 40 

(0.22) 

MTHFR G1793A GG 94(96%) 82 

(92%) 

GG vs. 

GA 

1.4329 0.3723 to 5.5150 0.737 

GA 4(4%) 5 

(6%) 

GA vs. 

AA 

- - NS 

AA 0(0%) 2 

(2%) 

GG vs. 

AA 

- - NS 

allele G 192(0.98) 169 

(0.95) 

G vs. A 2.5562 0.7731 to 8.4515 0.157 

A 4(0.02) 9 

(0.05) 

GSTP1 AA 39 (40%) 47 

(53%) 

AA vs. 

AG 

0.5809 0.3170 to 1.0644 0.093 

AG 50 (51%) 35 

(39%) 

AG vs. 

GG 

1.111 0.378 to 3.265 1 

GG 9 (9%) 7 

(8%) 

AA vs. 

GG 

0.6454 0.2202 to 1.8912 0.587 

allele A 128(0.65) 129 

(0.73) 

A vs. G 0.7150 0.4599 to 1.1116 0.147 

G 68(0.35) 49 

(0.27) 

Table 2. Comparison of frequencies of MTHFR C677T and GSTP1 genotypes between study groups. 

Moreover, there were no significant differences in the prevalence of alleles and genotypes between VSD patients with and without a family history of 

congenital heart defects. 
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Table 3. MTHFR C677T and GSTP1 genotypes frequencies according to VSD type 

4. Discussion 

Congenital heart disease (CHD) is one of the most commonly 

noninfectious diseases, which compounds one-third of all congenital 

anomalies and is the main cause of birth defects lead in to infant mortality 

[39, 40]. The incidence of CHD in different studies varies from about 

4/1,000 to 50/1,000 live births. The relative frequency of various 

significant forms of CHD also differs considerably from study to study. 

The prevalence of congenital cardiovascular malformations increased 

from 0.6 to 9.3 per 1,000 live births, and the prevalence of ventricular 

septal defect extended from 1.0 to 1.6 per 1,000 live births in the latest 

studies [1]. 

Ventricular septal defects are usually asymptomatic and close 

spontaneously [41]. There are definite multifactorial causes for CHDs, 

especially VSD, in which both environmental and genetic risk factors are 

consequential in the development of CHD [42, 43] 

Mutations in the encoding gene of the homeobox transcription factor 

NKX2-5 were mapped to chromosome 5q35were found to cause 

nonsyndromic congenital heart disease and atrioventricular conduction 

abnormalities [44]. The significance of genetic factors in the development 

of CHD is also supported by data from genome-wide association studies 

(GWASs).it have affirmed that a zone on chromosome 4p16 adjacent to 

the MSX1 and STX18 genes was correlated with the risk of atrial septal 

defect of ostium Secundum type (ASD2) [45]. Also revealed that 

rs2228638 in NRP1 on 10p11 significantly increased the risk of Tetralogy 

of Fallot (TOF) [46].  Abdul-Sater Z and et al. have formely shown that a 

tandem repeat in the intrinsic region of NFATC1 is associated with 

ventricular septal defects. after that, they showed for the first time a 

potential link between a mutation in NFATC1 and tricuspid valve atresia 

[47]. Xuan C et al. identified HOMEZ and PLAGL1 as pathogenic genes 

in Chinese patients with isolated ventricular septal defects (VSDs) [48, 

49]. 

Maternal hyperhomocysteinemia association with an increased risk of 

CHDs first reported in 1999 [50]. Wenstrom first noted a correlation 

between MTHFR gene polymorphism and susceptibility to CHD [51]. 

other studies supported the MTHFR -677T allele as a susceptibility cause 

for CHD in the Asian population and the -1298C allele role in the 

Caucasian pediatric population.8 Even MTHFR 677CT genotype posed 

as an implicating factor and as a maternal risk factor for septal defects in 

children with Down syndrome [52]. A study done by Zhu et al. showed 

that the MTHFR C677T locus variation is associated with the occurrence 

of the atrial septal defect (ASD) and patent ductus arteriosus (PDA) [53]. 

The 5, 10-methylenetetrahydrofolate reductase (MTHFR) gene is placed 

on chromosome 1 at 1p36.3. The primary product of the MTHFR gene is 

a catalytically active 77 kDa protein that catalyzes the transformation of 

5, 10-methylenetetrahydrofolate into 5-methyltetrahydrofolate, the 

primary circulating form of folate [8] A frequent C677T mutation 

(rs1801133) in the MTHFR gene has been described, which was 

associated with a 50% reduction of MTHFR enzyme activity, a rise in 
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plasma homocysteine concentration, and a decrease in plasma folic acid 

concentration [54].  Homozygosity (TT) for C677T polymorphism is 

associated with higher homocysteine levels and lower serum folate 

concentration than heterozygosity (CT) or wild-type genotype (CC) [55, 

56].  otherwise, it was mentioned that A1298C heterozygosity and 

homozygosity were associated neither with higher total nor lower folate 

plasma concentration [57, 58]. 

Although many studies propound the association between MTHFR 

(methylenetetrahydrofolate reductase) polymorphisms and VSD/ASD 

risk, the results are controversial. In one study, the association of heart 

defects with four polymorphisms in folate-related genes was examined. 

The AG and 66GG genotypes were associated with decline odds ratios for 

heart defects. Maternal MTHFR 1298AC genotype was associated with 

an increased odds ratio for aortic valve stenosis. No association between 

SLC19A1 c.80A > G or MTHFR c.677C > T and heart defect was found 

[59]. Wang and coworkers carried out a meta-analysis. They reported that 

the infant and maternal MTHFR C667T polymorphism association might 

be associated with an increased occurrence of CHD.46 By contrast, 

Mamasoula and coworkers indicated that the MTHFR C677T 

polymorphism is not linked with the risk of CHD [60]. Several studies 

with conflicting outcomes have been published to confirm an association 

between MTHFR and CHD. Later studies, however, do not support the 

theory of MTHFR acting as a risk factor for the development of CHD [15, 

61, 62].  A meta-analysis suggested that MTHFR C677T and A1298C 

polymorphisms are not associated with ventricular or atrial septal defect 

risk [16].  while the others had previously stated that they had found (for 

the first time!) that the embryonal MTHFR 677TT genotype was 

significantly associated with developing structural congenital heart 

malformations during early pregnancy [63]. 

Glutathione-S-transferases or GSTs catalyze the conjugation of many 

hydrophobic and electrophilic compounds and play an essential role in 

detoxification. The dissolved GSTs are classified into four main: alpha, 

mu, pi, and theta. 

It is proposed that the GSTM1 (del) and GSTP1 (Ile105Val) gene 

polymorphisms themselves are not associated with the risk of congenital 

malformations (CMs) in a newborn. However, smoking may increase the 

risk magnitude of the GSTP1 (Ile105Val) genotypes in the formation of 

CMs in a child [18]. Results suggest that individuals with susceptible 

metabolic GSTP1 genotypes may experience an increased risk of DNA 

damage elicited by pesticide exposure [64]. to clear up the genetic factors 

causing clinical differences in children with Down syndrome and assess 

possible maternal risk factors; the scientists have investigated GSTM1, 

GSTT1, GSTP1 gene polymorphisms. Still, the data indicated no 

relationship between detected GST polymorphisms with the risk of 

having an infant with Down syndrome [20]. 

One study revealed an increased incidence of the GSTP1 variant 

genotypes among myelodysplastic syndromes (MDS) patients, providing 

evidence for a potential pathogenic role of the GSTP1 polymorphism on 

de novo MDS risk [21]. 

Our study aimed to assess the correlation between polymorphisms in the 

methylenetetrahydrofolate reductase (MTHFR), Glutathione S-

Transferase Pi 1(GSTP1) genes, and the risk for VSD in Iranian subjects 

through a case-control study. Thus, our primary purpose was to figure out 

whether the MTHFR and GSTP1 gene polymorphisms are risk factors or 

not for the development of VSD in Iranian subjects. 

 

5. Conclusions 

This study shows no association between the MTHFR gene and VSD 

subjects. However, the GSTP1 gene AA polymorphisms can be 

considered as protective factors for VSD in Iranian subjects. More 

extensive cohort studies on mothers and children with distinct sub-classes 

are required to address risk adequately. 
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