
J. Clinical Endocrinology and Metabolism Page 1 of 4 

 
 

Concept for Automatic Multi-object Organ Detection and 

Segmentation in Abdominal CT Data 

Nico Zettler and Andre Mastmeyer* 

Digital Health Management, Hochschule Aalen, Germany. 

*Corresponding Author: Andre Mastmeyer, Digital Health Management, Hochschule Aalen, Germany. 

Received Date: September 05, 2022; Accepted Date: September 15, 2022; Published Date: October 20, 2022 

Citation: Nico Zettler and Andre Mastmeyer. (2022). Concept for Automatic Multi-object Organ Detection and Segmentation in Abdominal CT Data. 

Clinical Endocrinology and Metabolism,1(1); DOI: 10.31579/cem.2022/001 

Copyright: © 2022, Andre Mastmeyer, this is an open access article distributed under the Creative Commons Attribution License, which permits 

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

 

Introduction 

Virtual reality (VR) based simulation of interventions for training and 

planning is slowly gaining importance in clinical teaching and routine. VR 

methods can be used for various tasks, ranging from training scenarios for 

the medical student and staff, to individual patient related sim- ulations of 

planned operations [Mastmeyer et al., 2016a], [Mastmeyer et al., 2016b], 

[Mastmeyer et al., 2017], [Mastmeyer et al., 2018]. The necessary individual 

patient models should be available fast and be accurate to guarantee a 

plausible simulation. 

The first step in producing patient models is to acquire patient image data. 

This data will be used for the following steps in the modelling process. It is 

desirable to use high-quality image data, because inaccuracies will be 

carried over to the resulting model. The next step is the coarse localisation 

of the organs inside organ-specific volumes of interest (VOI) to simplify 

their subsequent segmentation. 

The aim of our study, is to automatically detect bounding boxes for organs 

in abdominal CT data by a learning from example method. The detected 

bounding boxes are then used for segmentation. Detection of the abdominal 

organs can be a challenge, because of the variety of shapes these organs can 

have. The intensity based features of these organs are also challenging, 

because the intensity range of neighbouring organs often overlaps. We 

detected five abdominal organs (liver, right kidney, left kidney, pancreas, 

spleen), that are commonly used in simulations. 

We used a random-forest method, that is developed by Criminisi et al. 

[Criminisi et al., 2013a] to automatically detect the bounding boxes of 

abdominal organs. The method uses random-regression-forests to predict 

the location of organ bounding boxes in CT data. Further more, we used the 

U-Net, proposed by Ronneberger et al. [Ronneberger et al., 2015], to 

automatically segment organs. The training and testing is carried out on a 

database of 50 abdominal CT scans, that had to be segmented beforehand. 

Material and Methods 

The database, that is used for training and testing, consists of 50 CT scans 

from three different sources: SLIVER071, LiTS2 and VISCERAL3. The 

data sets contain only abdominal CT data. The sets also vary in quality and 

field of view, to capture the variability of organs and scans. The scans are 

not only different in the number of slices (ranging from 64 to 861), thickness 

of slices (1-5 mm) and field- of-view, but also in image noise. This 

variability in the datasets is important, to ensure robustness vs. typical 

inference factors of clinical image data during training and application. All 

five target organs (liver, pancreas, left kidney, right kidney, spleen) are 

included in the scans. 

Only a small fraction of the segmentation maps contained all five target 

organs, thus manual structure segmentation was necessary frequently. 

1http://sliver07.org 

2https://competitions.codalab.orgcompetitions/17094 

3http://visceral.eu/closed-benchmarks/anatomy3 

1.1 Definition of ground truth bounding boxes 

The segmentation maps associated to the CT scans are the basis for the 

extraction of ground truth bounding boxes to be learned. A bounding box 

can be described as a cubical polyhedron that completely encloses an object. 

The corresponding organ bounding boxes of each of the scans can be created 

by scanning the segmentation maps for coordinate direction extremes of 

label occurrence. To create a three-dimensional bounding box, for each 

coordinate direction (x, y, z), we iterate slice wise through the segmentation 

map and save the extreme limits with an object label. 
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Figure 1: Training of a RRF: The inputs for the training process are CT 

scans and ground truth bounding boxes of the targeted organs. We create 

one feature vector and one off- set vector for each voxel that is part of a 

predefined medial cylinder subset in the scan [Criminisi et al., 2013a]. The 

trained RRF is able to predict the offset between a voxel and an organ 

bounding box. 

Figure 3: Training of a U-Net: The inputs for the training process are 

ground truth bounding boxes (BB), CT scans and their corresponding 

segmentation maps. The box is applied to the CT- and segmentation data to 

extract the relevant image region. Inside the organ VOIs, the segmentation 

is learned. The process results in an organ-wise U-Net, that can segment 

image regions. 

1.2 Training of the models 

Our concept is composed of two different machine learning approaches, 

(1) bounds detection and (2) CNNs U-Nets for segmentation. E.g. here, the 

random regression forests (RRF) are used to detect organ bounding boxes 

in CT data, while other approached are ready for usage [Kern and 

Mastmeyer, 2022]. The U-Nets make use of the detected bounding boxes 

and segment the contained organs. 

1.2.1 Training random regression forests for bounding box 

detection 

The decision trees used in RRFs split by minimising variance, then each leaf 

node outputs the mean of all label values in the node. We use RRFs to 

determine the location and extent of abdominal organs [Criminisi et al., 

2013a]. The main difference between random classification forests and 

RRFs, is the type of output that is predicted. While classification forests try 

to categorize objects, regression forests predict continuous values. 

Regression forests partition the data into manageable chunks to predict 

average values. As seen in Figure. 1, the method expects CT scans and 

ground truth bounding boxes as input. 

 

 

 

A three-dimensional bounding box bc of an organ c can be described by 

using a six-dimensional vector bc = (bc
Left, bc

Right, bc
Anterior, bc

Posterior, bc 
Head, 

bc
Foot) with co-ordinates in mm [Criminisi et al., 2013a]. We run over all 

voxels p = (xP, yP, zP), which are within a specified radial distance (r = 5 
cm) from the scan medial axis. The distance d between such a voxel and 

each of the bounding box walls, can be calculated by using d(p) = (xP − xLeft, 

xP − xRight, yp − yAnterior, yP − yPosterior, zP − zHead, zP − zFoot) and is saved as 
the offset-vector to be learned. In contrast to Criminisi et al. [Criminisi et 
al., 2013[a], we use only 50 feature boxes, that are evenly distributed on 

three spheres (r = 5 cm, 2.5 cm, 1.25 cm) to generate the input feature vector. 

The feature boxes FJ are intended to capture the spatial and intensity context 

of the current voxel. For this purpose, the mean intensities of the feature 

boxes are calculated and saved in the feature vector. An example feature 

box is shown in figure. 2. While training, the RRF learns 

 

1.2.2 Training of a U-Net for semantic segmentation 

The training data for our U-Net consists of the expert segmentations and 

ground truth bounding boxes, as schematised in Fig. 3. The bounding boxes 

(VOIs) are then used to locally extract the intensity and label data from the 

CT scans and their corresponding label maps. As input, the U-Net receives 

a VOI from the intensity data, while the same region within the label data is 

connected to the output. We use the U-Net architecture proposed by 

Ronneberger et al. [Ronneberger et al., 2015], which consists of nine layers 

with four down- and up-scale steps. The network was trained using batches 

of size 15 over 50 epochs. In addition, Adam optimization and a cross 

entropy loss function were used. We trained one U-Net for each organ, using 

a ReLU activation function. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Example feature box: The feature box Fj is generated in 

correlation to the current voxel and calculated the mean value of a 3D image 

section [Criminisi et al., 2013b]. the distance vector (later: output) to the 

reference bounding box using the feature boxes. 
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1.3 Application of the models 

In the first step, the organ specific RRFs predict the organ bounding box 

candidates. Then, a distance vector is selected by majority voting and 

converted into a six-dimensional vector to describe the final organ-specific 

bounding box. 

Now, the U-Net model gets the corresponding bounding box as input. Since 

the U-Net only accepts a static number of voxels, the BB is resized to a fixed 

size. The U-Net uses the data contained inside the given bounding box, to 

segment the corresponding organ. The output is a segmentation map of the 

full target organ. 

1.4 Evaluation 

We used a five-fold Monte Carlo cross-validation based on a 30:20 

(train:test) data split. The target bounding boxes extend along the three axis 

x, y, z. The resulting segmentations of the combined application are 

compared against the reference segmentations by using the Dice coefficient 

[Taha and Hanbury, 2015]. 

Results 

Table 1 shows the Dice coefficients achieved by our conceptual method for 

all five target organs. We compared our values to studies, that tried to 

segment the same organs with automatic methods. 

 

 

 

 
 

 

 

 

 

 

 

 

 

The best results show up for the liver and spleen. Both organs achieve a dice 

coefficient of 0.71. The right kidney is slightly worse vs. left with mean 

values of 0.55 and 0.67 respectively. The segmentation of the pancreas 

achieved the lowest dice coefficient with only 0.32. The standard deviation 

is similar for all organs ranging from 0.26 to 0.34. An example segmentation 

is presented in Figure. 4. 

Segmentation of unseen patient image data scan takes between 30 seconds 

and one minute depending on the size of the data, i.e. on an Intel-i7 

processor with a consumer NVIDIA GTX 1050 GPU. 

Discussion 

We were able to detect organ bounding boxes of variable qualitys 

automatically. Though, the overall position and extent of the predicted 

bounding boxes has to be improved to ensure a satisfying segmentation. 

Especially the prediction along the z-axis is not accurate enough and 

resulted in boxes that are displaced. Due to misalignment, some 

segmentation masks are cut off, because parts of the organ are missing. The 

standard deviations were too high, indicating highly varying results. 

In summary, the results of the current state of the segmentation method are 

affected by displaced bounding boxes and could not compete with the Dice 

coefficients of related studies. Especially the pancreas is a challenge. 

Figure 4: Example segmentations:(a) A good segmentation of the liver, with 

some leakage into surrounding structures. (b) A poor segmentation of the 

pancreas. The bounding box was shifted along the z-axis. This cut off the 

upper half of the pancreas, resulting in an incomplete segmentation. The 

segmentation also included parts of surrounding structures. because of its 

shape and intensity similarity to surrounding tissue. Though it is important 

to mention that most of the studies had more training data and are often 

focused on a single organ not addressing a group. 

Future works should focus on the accuracy and robustness of the 

bounding box detection [Kern and Mastmeyer, 2022]. The quality of the 

tar- get segmentation depends heavily on the quality of the detected 

bounding boxes. We used predicted bounding boxes, to produce results for 

a completely automatic method. 
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